| A. | 函数 y=f (x)•g ( x) 的周期为 2 | |
| B. | 函数 y=f (x)•g ( x) 的最大值为 1 | |
| C. | 将f (x)的图象向左平移$\frac{π}{2}$个单位后得到 g(x)的图象 | |
| D. | y=f(x)+g(x)的一个对称中心是($\frac{3}{4}π$,0) |
分析 根据f (x)=sin(x+$\frac{π}{2}$),g(x)=sin(π-x),依次对各选项化简即可判断.
解答 解:f (x)=sin(x+$\frac{π}{2}$),g(x)=sin(π-x),
那么:f (x)•g ( x)=sin(x+$\frac{π}{2}$)sin(π-x)=sinxcosx=$\frac{1}{2}$sin2x.
∴周期T=$\frac{2π}{2}=π$,∴A选项不对.
∵sin2x的最大值为1,∴y=f (x)•g ( x) 的最大值为 $\frac{1}{2}$,∴B不对.
f (x)=sin(x+$\frac{π}{2}$)=cosx,向左平移$\frac{π}{2}$个单位后,可得cos(x$+\frac{π}{2}$)=-sinx,得不到g(x)的图象,
∴C不对.
f (x)+g(x)=sin(x+$\frac{π}{2}$)+sin(π-x)=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
当x=$\frac{3}{4}π$时,可得f (x)+g(x)=0,
∴y=f(x)+g(x)的一个对称中心是($\frac{3}{4}π$,0),
∴D对!
故选:D.
点评 本题考查了三角函数的性质和化简能力.属于基础题.
科目:高中数学 来源: 题型:解答题
| 学生序号i | 1 | 2 | 3 | 4 | 5 |
| 数学xi(分) | 89 | 91 | 93 | 95 | 97 |
| 物理yi(分) | 87 | 89 | 89 | 92 | 93 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| ① | ② | ③ | |
| A | i≤7? | s=s-$\frac{1}{i}$ | i=i+1 |
| B | i≤128? | s=s-$\frac{1}{i}$ | i=2i |
| C | i≤7? | s=s-$\frac{1}{2i}$ | i=i+1 |
| D | i≤128? | s=s-$\frac{1}{2i}$ | i=2i |
| A. | A | B. | B | C. | C | D. | D |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -$\frac{1}{2}$ | C. | 1 | D. | -4或1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1$-\sqrt{2}$ | B. | 3 | C. | $\sqrt{2}-1$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com