精英家教网 > 高中数学 > 题目详情
14.如图,在三棱锥P-ABC中,平面PAC⊥平面PAB,△PAC为等边三角形,AB⊥PB且AB=PB=$\sqrt{2}$,O为PA的中点,点M在AC上.
(1)求证:平面BOM⊥平面PAC;
(2)求点P到平面ABC的距离.

分析 (1)由AB=PB,O为PA的中点,得OB⊥PA,再由面面垂直的性质可得BO⊥平面PAC,进一步得到平面BOM⊥平面PAC;
(2)由已知得,△PAB为等腰直角三角形,AB=PB=$\sqrt{2}$,求出等边三角形PAC的面积,然后利用等积法求点P到平面ABC的距离.

解答 (1)证明:∵AB=PB,O为PA的中点,∴OB⊥PA,
又∵平面PAC⊥平面PAB,且OB?平面ABP,
∴BO⊥平面PAC,而OB?平面BOM,
∴平面BOM⊥平面PAC;
(2)解:由已知得,△PAB为等腰直角三角形,AB=PB=$\sqrt{2}$,
∴AP=2,BO=1,等边三角形PAC的面积为${S}_{△PAC}=\sqrt{3}$,
∴${V}_{B-PAC}=\frac{1}{3}×{S}_{△PAC}×BO=\frac{1}{3}×\sqrt{3}×1=\frac{\sqrt{3}}{3}$.
由(1)知OC⊥平面PAB,∴AC=BC=2,
∴在△ABC中,AB边上的高为$\frac{\sqrt{14}}{2}$.
∴${S}_{△ABC}=\frac{1}{2}×\sqrt{2}×\frac{\sqrt{14}}{2}=\frac{\sqrt{7}}{2}$.
设点P到平面ABC的距离为h,
则有${V}_{P-ABC}=\frac{1}{3}×{S}_{△ABC}×h=\frac{\sqrt{3}}{3}$,得h=$\frac{2\sqrt{21}}{7}$.
故点P到平面ABC的距离为$\frac{2\sqrt{21}}{7}$.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,考查多面体体积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x在区间(0,1)内为增函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,2)C.(-∞,2)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为M,过原点O的直线交椭圆于A,B两点,若|AB|=|BM|=4,cos∠ABM=$\frac{3}{4}$,则椭圆方程为$\frac{{x}^{2}}{8}+\frac{15{y}^{2}}{56}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在[45,75)内为优质品,从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如表:
甲企业:
 分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 10 40 115 165 120 45 5
乙企业:
分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 5 60 110 160 90 70 5
(1)已知甲企业的500件产品质量指标值的样本方差s2=142,该企业生产的零件质量指标值X服从正态分布N(μ,σ2),其中μ近似为质量指标值的样本平均数$\overline{x}$(注:求$\overline{x}$时,同一组数据用该区间的中点值作代表),σ2近似为样本方差s2,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率(精确到0.001)
(2)由以上统计数据完成下面2×2列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”
  甲厂乙厂 合计 
 优质品   
 非优质品   
 合计   
附注:
参考数据:$\sqrt{142}$≈11.92
参考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,已知cosA=cosB,则△ABC的形状一定是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一货轮航行至M处,测得灯塔S在货轮的北偏西15°,与灯塔相距80海里,随后货轮沿北偏东45°的方向航行了50海里到达N处,则此时货轮与灯塔S之间的距离为(  )
A.70海里B.10   129海里
C.10    79海里D.10  89-40  3海里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6,则5a1+3a3+a5=-30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,公差为1,若S6=3S3,则a9=(  )
A.11B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x+1)为奇函数,求f($\frac{8}{7}$)+f($\frac{7}{6}$)+f($\frac{6}{5}$)+f($\frac{5}{4}$)+f($\frac{6}{7}$)+f($\frac{5}{6}$)+f($\frac{4}{5}$)+f($\frac{3}{4}$)=0.

查看答案和解析>>

同步练习册答案