精英家教网 > 高中数学 > 题目详情
如图,长方体中,,点E是AB的中点.

(1)求三棱锥的体积;
(2)证明: ; 
(3)求二面角的正切值.
(1)1;(2)详见解析;(3)

试题分析:(1)求四面体的体积,当高不好确定时候,可考虑等体积转化,该题中,高,可求体积;(2)证明直线和直线垂直,可先证明直线和平面垂直,由,从而,所以,(3) 求二面角的平面角,可以利用几何法,先找到二面角的平面角,然后借助平面图形去计算,∵,所以,进而可证,就是的平面角,二面角也可以利用空间向量法,建立适当的空间直角坐标系,把相关点的坐标表示出来,计算两个半平面的法向量,进而求法向量的夹角,然后得二面角的余弦值.
试题解析:(1)解:在三棱锥D1-DCE中,D1D⊥平面DCE,D1D=1
在△DCE中,
CD=2,CD2=CE2+DE2  ∴CE⊥DE.

∴三棱锥D1-DCE的体积. =                    4分
(2)证明:连结AD1,由题可知:四边形ADD1A1是正方形
∴A1D⊥AD1 又∵AE⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E  ABAD1=A
∴A1D⊥平面AD1E 又∵D1E平面AD1E
∴A1D⊥D1E                                               8分
(3)根据题意可得:D1D⊥平面ABCD
又因为CE平面ABCD,所以D1D⊥CE。
又由(1)中知,DE⊥CE,D1D平面D1DE,DE平面D1DE,D1DDE=D,
∴CE⊥平面D1DE,又∵D1E平面D1DE ∴CE⊥D1E.
∴∠D1ED即为二面角D1―EC―D的一个平面角.
在Rt△D1DE中,∠D1DE=90°,D1D="1," DE=
 
∴二面角D1―ED―D的正切值是                         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)求证:BB1∥平面EFM;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(Ⅰ)如果为线段VC的中点,求证:平面
(Ⅱ)如果正方形的边长为2, 求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱中,的中点.

(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,已知BD=2AD=2PD=8,AB=2DC=4

(Ⅰ)设M是PC上一点,证明:平面MBD⊥平面PAD;
(Ⅱ)若M是PC的中点,求棱锥P-DMB的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求证:BD⊥AA1
若四边形是菱形,且,求四棱柱的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直角梯形的上底和下底长分别为,较短腰长为,若以较长的底为旋转轴将该梯形旋转一周,则该旋转体的体积为(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体外接球的表面积为,那么正方体的棱长等于________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图直三棱柱ABC﹣A1B1C1的体积为V,点P、Q分别在侧棱AA1和CC1上,AP=C1Q,则四棱锥B﹣APQC的体积为(  )
   
A.B.C.D.

查看答案和解析>>

同步练习册答案