精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x3-3x
(1)求f(x)的单调区间;  
(2)求f(x)在区间[-3,2]上的最大值和最小值.

分析 (1)求导函数,由导数的正负,可得f(x)的单调区间;
(2)利用函数的最值在极值点及端点处取得,即可求得结论.

解答 解:(1)根据题意,由于f(x)=x3-3x,∴f′(x)=3(x+1)(x-1).
f′(x)>0,得到x>1或x<-1,故可知f(x)的单调增区间是(-∞,-1),(1,+∞),
f′(x)<0,得到-1<x<1,故可知f(x)的单调减区间是(-1,1);
(2)当x=-3时,f(x)在区间[-3,2]取到最小值为-18.
当x=-1或2时,f(x)在区间[-3,2]取到最大值为2.

点评 本题考查导数知识的运用,考查函数的单调性与最值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.给出下列两个命题:
命题:p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为$\frac{π}{4}$
命题:q:若函数f(x)=x+$\frac{4}{x}$,则f(x)在区间[1,$\frac{3}{2}$]上的最小值为4.
那么,下列命题为真命题的(  )
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={y|y=2x-1,x∈R},B={x|y=$\sqrt{x+1}$-log2(2-x)},则A∪B=(  )
A.(-1,2)B.[-1,2)C.(-1,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数为偶函数的是(  )
A.y=x2,x∈[0,1]B.$f(x)=x(\frac{1}{{{2^x}-1}}+\frac{1}{2})$
C.$f(x)=\left\{\begin{array}{l}x+1,(x>0)\\ \\ x-1.(x<0)\end{array}\right.$D.$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}({x}^{2}-6x+10),x≥0}\\{{3}^{x}+2x,x<0}\end{array}\right.$,则函数y=f(x)的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(log2x)的定义域为[1,4],则f(x)的定义域为(  )
A.[2,16]B.[1,2]C.[0,8]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lg(x-a)的定义域为A,集合B={y|y=2x-1,x∈R}.
(1)若A=B,求实数a的值;
(2)若(∁RA)∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=\frac{sin2x}{{{e^{|x|}}}}$的大致图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)+f′(x)>1,f(0)=2016,则不等式exf(x)>ex+2015(其中e为自然对数的底数)的解集为{x丨x>0}.

查看答案和解析>>

同步练习册答案