精英家教网 > 高中数学 > 题目详情
18.给出下列两个命题:
命题:p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为$\frac{π}{4}$
命题:q:若函数f(x)=x+$\frac{4}{x}$,则f(x)在区间[1,$\frac{3}{2}$]上的最小值为4.
那么,下列命题为真命题的(  )
A.p∧qB.¬pC.p∧(¬q)D.(¬p)∧(¬q)

分析 分别判定命题p、q的真假,再根据复合命题真假的真值表判定,

解答 解:满足条件的正方形ABCD,如下图示:

其中满足动点M到定点A的距离|MA|≤1的平面区域如图中阴影所示:
则正方形的面积S正方形=1阴影部分的面积为$\frac{π}{4}$,故动点P到定点A的距离|MA|≤1的概率P=$\frac{π}{4}$.
故命题p为真命题.
对于函数f(x)=x+$\frac{4}{x}$,则f(x)在区间[1,$\frac{3}{2}$]上单调递减,
f(x)的最小值为f($\frac{3}{2}$)≠4,故命题q为假命题.
所以:p∧q为假命题;¬p假命题;p∧(¬q)真命题;(¬p)∧(¬q)假命题;
故选:C

点评 本题考查了复合命题真假的判定,解题的关键是要把每个命题的真假给与正确判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数$f(x)=\sqrt{{x^2}-1}+{log_2}({x-1})$的定义域是(1,+∞).(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是$\frac{1}{2}$.
(1)求小球落入A袋中的概率P(A);
(2)在容器入口处依次放入4个小球,记ξ为落入A袋中的小球个数,试求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为绘制海底地貌图,测量海底两点C,D间的距离,海底探测仪沿水平方向在A,B两点进行测量,A,B,C,D在同一个铅垂平面内.海底探测仪测得∠BAC=30°,∠DAC=45°,∠ABD=45°,∠DBC=75°,同时测得$AB=\sqrt{3}$海里.
(1)求AD的长度;
(2)求C,D之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{-x+1,0≤x≤1}\\{lnx,1<x≤e}\end{array}\right.$,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为(  )
A.$\frac{2e-3}{2e}$B.$\frac{3}{2e}$C.$\frac{{e}^{e}{-e}^{2}+e-1}{e}$D.$\frac{e-1}{e+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sinα=2cosα,计算:
(1)$\frac{2sinα-cosα}{sinα+2cosα}$;
(2)sin2α+sinαcosα-2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为(  )
A.2B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F是抛物线C:x2=4y的焦点,A(x1,y1),B(x2,y2)为抛物线C上不同的两点,l1,l2分别是抛物线C在点A、点B处的切线,P(x0,y0)是l1,l2的交点.
(1)当直线AB经过焦点F时,求证:点P在定直线上;
(2)若|PF|=2,求|AF|•|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-3x
(1)求f(x)的单调区间;  
(2)求f(x)在区间[-3,2]上的最大值和最小值.

查看答案和解析>>

同步练习册答案