精英家教网 > 高中数学 > 题目详情
18.平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(4,2),$\overrightarrow c=(m,1)$,且$\overrightarrow{c}$与$\overrightarrow{a}$的夹角等于$\overrightarrow{c}$与$\overrightarrow{b}$的夹角,则m=1.

分析 利用数量积运算性质、向量夹角公式即可得出.

解答 解:$|\overrightarrow{a}|$=$\sqrt{5}$,$|\overrightarrow{b}|$=$2\sqrt{5}$,$|\overrightarrow{c}|$=$\sqrt{{m}^{2}+1}$,$\overrightarrow{a}•\overrightarrow{c}$=m+2,$\overrightarrow{b}•\overrightarrow{c}$=4m+2,
∵$\overrightarrow{c}$与$\overrightarrow{a}$的夹角等于$\overrightarrow{c}$与$\overrightarrow{b}$的夹角,
∴$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}||\overrightarrow{c}|}$,
∴$\frac{m+2}{\sqrt{5}}=\frac{4m+2}{2\sqrt{5}}$,
解得m=1.
故答案为:1.

点评 本题考查了数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的通项公式为an=n2-12n-13,则此数列的前n项和取最小时,n=12或13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两篮球运动员上赛季每场比赛的得分如下:
甲:12,15,24,25,31,31,36,36,37,39,44,49,50
乙:8,13,14,16,23,26,28,33,38,39,51
用茎叶图将这些数据列出来,观察数据的分布情况,
(1)求运动员甲的众数和运动员乙的中位数
(2)比较这两位运动员得分水平
(3)哪位运动员发挥比较稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=cosx的图象上的每个点的横坐标变为原来的2倍、纵坐标不变,再将所得图象向右平移$\frac{π}{3}$个单位,则最后得到的图象对应的函数解析式为(  )
A.$y=cos(2x-\frac{π}{3})$B.$y=cos(2x-\frac{2π}{3})$C.$y=cos(\frac{x}{2}-\frac{π}{3})$D.$y=cos(\frac{x}{2}-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数$f(x)=cos(\sqrt{2x-{x^2}})$的单调递增区间是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-2x+a1nx.a∈R.
(1)若函数f(x)在点(1,f(1))处的切线与直线x+y-1=0平行,求实数a的值;
(2)求函数f(x)的单调区间;
(3)若a>0,函数g(x)=f(x)+2x+2a|lnx-1|,求函数g(x)在[$\frac{1}{e}$,+∞)上的最小值.(注:e是自然对数的底数.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线方程为x-$\sqrt{3}$y=0,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求曲线x2+2xy+y+1=0在点(2,-1)处的切线和法线方程.

查看答案和解析>>

同步练习册答案