精英家教网 > 高中数学 > 题目详情
已知
2+
2
3
=2
2
3
3+
3
8
=3
3
8
4+
4
15
=4
4
15
,…,若
6+
a
t
=6
a
t
(a,t均为正实数).类比以上等式,可推测a,t的值,则t+a=
 
考点:归纳推理
专题:推理和证明
分析:观察所给式子的特点,找到相对应的规律,问题得以解决.
解答: 解:∵
2+
2
3
=2
2
3
3+
3
8
=3
3
8

2+
2
22-1
=2
2
22-1
3+
3
32-1
=3
3
32-1

6+
a
t
=6
a
t
(a,t均为正实数)
∴a=6,t=62-1=35,
∴t+a=35+6=41.
故答案为:41.
点评:本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果函数f(x)满足:对定义域中的任意三个数a,b,c,都有f(a),f(b),f(c)是一个三角形三边的长,则称f(x)为“三角形函数”.在函数①y=|x|;②y=2x;③y=x+
1
x
(1≤x≤2);④y=4x3-3x2+2(0≤x≤1)中,“三角形函数”的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax(a∈R)
(Ⅰ)若函数f(x)无零点,求实数a的取值范围;
(Ⅱ)若存在两个实数x1,x2且x1≠x2,满足f(x1)=0,f(x2)=0,求证x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知体积为8,高为4的三棱柱ABC-A1B1C1,CC1⊥平面A1B1C1,点D、E分别在棱AA1和CC1上,且DE⊥B1C1,DA1=3,EC1=2.
(Ⅰ)求证C1A1⊥C1B1
(Ⅱ)求平面BDE与平面ABC所成锐二面角的最小值;
(Ⅲ)若用此三棱柱作为无盖(上底面ABC)盛水容器,盛水时发现在D、E两处有泄露,试问此容器最多能盛水多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an}的前n项和,且2an+Sn=An2+Bn+C.
(1)当A=B=0,C=1时,求an
(2)若数列{an}为等差数列,且A=1,C=-2.
①求an
②设bn=
1
an
an+1
+an+1
an
,且数列{bn}的前n项和为Tn,求T60的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x-1,二次函数g(x)=ax2-x-1,其中常数a∈R.
(1)若函数f(x)与g(x)在区间(a-2,a)内均为增函数,求实数a的取值范围;
(2)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最大值时,记g(x)的最大值为h(a),求函数h(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-2x+1的单调区间及单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的所有棱长均为a,侧面B1C1CB⊥底面ABC,且AC1⊥BC.
(Ⅰ)求证:AC1⊥A1B;
(Ⅱ)求二面角B1-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
=|
a
|•|
b
|•cosλ>0,求λ的取值范围.

查看答案和解析>>

同步练习册答案