精英家教网 > 高中数学 > 题目详情
10.已知tanα=2.
(1)求sinα;
(2)$\frac{2sinα-cosα}{2sinα+cosα}$.

分析 (1)由tanα的值,利用同角三角函数间的基本关系求出sinα的值.
(2)化简所求的表达式为正切函数的形式,代入求解即可.

解答 (本题满分12分)解:(1)∵tanα=2,
∴sinα=±$\sqrt{\frac{ta{n}^{2}α}{1+ta{n}^{2}α}}$=±$\frac{2\sqrt{5}}{5}$.
(2)$\frac{2sinα-cosα}{2sinα+cosα}$=$\frac{2tanα-1}{2tanα+!}$=$\frac{3}{5}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\sqrt{2sinx-1}$+$\sqrt{-{x}^{2}+6x}$的定义域是(  )
A.[$\frac{π}{6}$,$\frac{5π}{6}$]B.[$\frac{π}{6}$,6]C.[$\frac{5π}{6}$,6]D.[0,$\frac{π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:ex>1,命题q:log2x<0,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=-x2-2x+1,g(x)=$\left\{\begin{array}{l}x+\frac{1}{x}(x>0)\\ 3-(\frac{1}{2})^x(x≤0)\end{array}$,若函数y=g(f(x))-a恰有四个不同的零点,则a的取值范围是(  )
A.(2,+∞)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.[2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x2-4|x|+5.
(1)用分段函数的形式表示该函数并画出该函数的图象;
(2)写出该函数的值域以及函数的单调递减区间(不用写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x),g(x)的定义域为R,若不等式f(x)≥0的解集为F,不等式g(x)<0的解集为G,全集为R,则不等式组$\left\{\begin{array}{l}{f(x)<0}\\{g(x)≥0}\end{array}\right.$的解集是(  )
A.(∁RF)∪GB.R(F∩G)C.F∩GD.(∁RF)∩(∁RG)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与直线l:3x-5y+4=0关于原点对称的直线的方程为(  )
A.3x+5y+4=0B.3x-5y-4=0C.5x-3y+4=0D.5x+3y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列中,a1=2,an+1=$\frac{{{a_n}-1}}{{{a_n}+1}}({n∈{N^*}})$,则a2014=(  )
A.2B.$\frac{1}{3}$C.$-\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算下列各式:(要求写出必要的运算步骤)
(1)($\root{3}{16}$)${\;}^{\frac{3}{2}}$-($\frac{1}{e}$)ln2-log327;
(2)已知2a=3,试用a表示log418-log312.

查看答案和解析>>

同步练习册答案