精英家教网 > 高中数学 > 题目详情
2.已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是(  )
A.若m∥α,α∩β=n,则m∥nB.若l?α,m?α,l∥β,m∥β,则α∥β
C.若m⊥α,m⊥n,则n∥αD.若m⊥α,n⊥β,α⊥β,则m⊥n

分析 在A中,m与n平行或异面;在B中,α与β相交或平行;在C中,n∥α或n?α;在D中,由直线与平面垂直的性质定理及平面与平面垂直的判定定理得m⊥n.

解答 解:由α,β是两个不同的平面,m,n是两条不重合的直线,知:
在A中,若m∥α,α∩β=n,则m与n平行或异面,故A错误;
在B中,若l?α,m?α,l∥β,m∥β,则α与β相交或平行,故B错误;
在C中,若m⊥α,m⊥n,则n∥α或n?α,故C错误;
在D中,若m⊥α,n⊥β,α⊥β,
则由直线与平面垂直的性质定理及平面与平面垂直的判定定理得m⊥n,故D正确.
故选:D.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.己知函数f(x)=$\sqrt{3}sinxcosx+{sin^2}x+\frac{1}{2}$(x∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当$x∈[-\frac{π}{12},\frac{5π}{12}]$时,求函数f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据下列条件求直线的方程.
(1)与直线2x+3y-1=0平行且在与两坐标轴围成的面积为3.
(2)过点(-1,3)且与两点A(3,0),B(-1,2)距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin x,x∈[0,2π]的图象与直线y=-$\frac{1}{2}$的交点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于命题:
①若a,b∈R,ab=0是|a|+|b|=|a+b|成立的充要条件;
②“若x>y,则xc2>yc2”的逆命题是真命题;
③已知x,y∈R,“若xy=0,则x=0或y=0”的逆否命题是“若x≠0或y≠0,则xy≠0”;
④“若x∉A∩B,则x∉A∪B”的逆命题.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和Sn满足Sn=$\frac{1}{2}$×3n+1-$\frac{3}{2}$,数列{bn}满足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义全集U的子集A的特征函数为fA(x)=$\left\{{\begin{array}{l}{1}\\{0}\end{array}}\right.\begin{array}{l}{,x∈A}\\{,x∈{∁_U}A}\end{array}$,这里∁UA表示集合A在全集U中的补集.已知A⊆U,B⊆U,给出以下结论:
①若A⊆B,则对于任意x∈U,都有fA(x)≤fB(x);
②对于任意x∈U,都有${f_{{∁_U}A}}$(x)=1-fA(x);
③对于任意x∈U,都有fA∩B(x)=fA(x)•fB(x);
④对于任意x∈U,都有fA∪B(x)=fA(x)+fB(x).
其中正确的结论有①②③.(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{{x}^{2}-a,x>1}\end{array}\right.$且f(2$\sqrt{2}$)=3,则a=5;f(f(2))=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}的前n项和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S10=(  )
A.-20B.-21C.20D.21

查看答案和解析>>

同步练习册答案