分析 由已知得f(2$\sqrt{2}$)=(2$\sqrt{2}$)2-a=3,从而求出a,进而求出f(2),由此能求出f(f(2))的值.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{{x}^{2}-a,x>1}\end{array}\right.$且f(2$\sqrt{2}$)=3,
∴f(2$\sqrt{2}$)=(2$\sqrt{2}$)2-a=3,
解得a=5.
∴f(2)=22-5=-1,
f(f(2))=f(-1)=5-1=$\frac{1}{5}$.
故答案为:5,$\frac{1}{5}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,α∩β=n,则m∥n | B. | 若l?α,m?α,l∥β,m∥β,则α∥β | ||
| C. | 若m⊥α,m⊥n,则n∥α | D. | 若m⊥α,n⊥β,α⊥β,则m⊥n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 评分等级 | [0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
| 女(人数) | 2 | 8 | 10 | 18 | 12 |
| 男(人数) | 4 | 9 | 19 | 10 | 8 |
| 满意该商品 | 不满意该商品 | 总计 | |
| 女 | 30 | 20 | 50 |
| 男 | 18 | 32 | 50 |
| 总计 | 48 | 52 | 100 |
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com