精英家教网 > 高中数学 > 题目详情
1.“x2>9”是“x>3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 结合不等式的解法,利用充分条件和必要条件的定义进行判断.

解答 解:解不等式x2>9得x>3或x<-3,则x>3⇒x2>9,
而x2>9推不出x>3.
故““x2>9”是“x>3””的必要而不充分条件.
故选B

点评 本题主要考查充分条件和必要条件的定义和应用,同时考查二次不等式的解法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出的方案有(  )
A.7种B.12种C.14种D.49种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知函数f(x)=$\sqrt{3}sinxcosx+{sin^2}x+\frac{1}{2}$(x∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当$x∈[-\frac{π}{12},\frac{5π}{12}]$时,求函数f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程f(x)=x的根称为函数f(x)的不动点,若函数$f(x)=\frac{x}{a(x+5)}$有唯一不动点,且x1=1613,${x_{n+1}}=\frac{1}{{f(\frac{1}{x_n})}}$(n∈N*),则x2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,$2acos(A-\frac{π}{3})=bcosC+ccosB$.
(1)求A;
(2)若$a=\sqrt{3}$,求b+c范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},则关于x的不等式cx2-bx+a<0的解集为(-∞,-$\frac{1}{6}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.根据下列条件求直线的方程.
(1)与直线2x+3y-1=0平行且在与两坐标轴围成的面积为3.
(2)过点(-1,3)且与两点A(3,0),B(-1,2)距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=sin x,x∈[0,2π]的图象与直线y=-$\frac{1}{2}$的交点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{{x}^{2}-a,x>1}\end{array}\right.$且f(2$\sqrt{2}$)=3,则a=5;f(f(2))=$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案