6£®ÌÔ±¦Âô¼ÒÔÚijÉÌÆ·µÄËùÓÐÂò¼ÒÖУ¬Ëæ»úÑ¡ÔñÄÐÅ®Âò¼Ò¸÷50λ½øÐе÷²é£¬ËûÃÇµÄÆÀ·ÖµÈ¼¶Èç±í£º
ÆÀ·ÖµÈ¼¶[0£¬1]£¨1£¬2]£¨2£¬3]£¨3£¬4]£¨4£¬5]
Å®£¨ÈËÊý£©28101812
ÄУ¨ÈËÊý£©4919108
£¨¢ñ£©´ÓÆÀ·ÖµÈ¼¶Îª£¨3£¬4]µÄÈËÖÐËæ»úÑ¡2¸öÈË£¬ÇóÇ¡ÓÐ1ÈËÊÇÅ®ÐԵĸÅÂÊ£»
£¨¢ò£©¹æ¶¨£ºÆÀ·ÖµÈ¼¶ÔÚ[0£¬3]µÄΪ²»ÂúÒâ¸ÃÉÌÆ·£¬ÔÚ£¨3£¬5]µÄΪÂúÒâ¸ÃÉÌÆ·£®Íê³ÉÏÂÁÐ2¡Á2ÁÐÁª±í²¢°ïÖúÂô¼ÒÅжϣºÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05µÄǰÌáÏÂÈÏΪÂúÒâ¸ÃÉÌÆ·ÓëÐÔ±ðÓйØÏµ£¿
ÂúÒâ¸ÃÉÌÆ·²»ÂúÒâ¸ÃÉÌÆ·×ܼÆ
Ů302050
ÄÐ183250
×ܼÆ4852100
²Î¿¼Êý¾ÝÓ빫ʽ£º
£¨1£©£º
P£¨K2¡Ýk0£©0.250.150.100.050.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828
£¨2£©K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿£®

·ÖÎö £¨I£©´ÓÆÀ·ÖµÈ¼¶Îª£¨3£¬4]µÄ28ÈËÖÐËæ»úÑ¡2¸öÈË£¬$C_{28}^2=378$ÖÖ½á¹û£¬Ç¡ÓÐ1ÈËÊÇÅ®ÐԵĹ²ÓÐ$C_{18}^1•C_{10}^1=180$£¬ÓɸÅÂʹ«Ê½¼´¿ÉÇóµÃÇ¡ÓÐ1ÈËÊÇÅ®ÐԵĸÅÂÊ£»
£¨II£©¸ù¾Ýͳ¼ÆÊý¾Ý£¬¿ÉµÃ±í¸ñÖÐÊý¾Ý£¬¼ÆËãK2µÄÖµÀûÓòο¼Êý¾Ý£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©´ÓÆÀ·ÖµÈ¼¶Îª£¨3£¬4]µÄ28ÈËÖÐËæ»úÑ¡2¸öÈË£¬¹²ÓÐ$C_{28}^2=378$ÖÖ½á¹û£¬
ÆäÖÐÇ¡ÓÐ1ÈËÊÇÅ®ÐԵĹ²ÓÐ$C_{18}^1•C_{10}^1=180$ÖÖ½á¹û£¬
¹ÊËùÇóµÄ¸ÅÂÊ$P=\frac{180}{378}=\frac{10}{21}$¡­£¨5·Ö£©
£¨¢ò£©

ÂúÒâ¸ÃÉÌÆ·²»ÂúÒâ¸ÃÉÌÆ·×ܼÆ
Ů302050
ÄÐ183250
×ܼÆ4852100
¡­£¨8·Ö£©
¼ÙÉèH0£ºÊÇ·ñÂúÒâ¸ÃÉÌÆ·ÓëÂò¼ÒµÄÐÔ±ðÎÞ¹Ø
Ôò${K^2}=\frac{{100¡Á{{£¨32¡Á30-20¡Á18£©}^2}}}{50¡Á50¡Á52¡Á48}¡Ö5.769£¾3.841$£¬
Òò´Ë£¬ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.05µÄǰÌáÏÂÈÏΪÂúÒâ¸ÃÉÌÆ·ÓëÐÔ±ðÓйأ®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵļÆË㣬¿¼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®¡÷ABCÖУ¬$2acos£¨A-\frac{¦Ð}{3}£©=bcosC+ccosB$£®
£¨1£©ÇóA£»
£¨2£©Èô$a=\sqrt{3}$£¬Çób+c·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶ÔÓÚÃüÌ⣺
¢ÙÈôa£¬b¡ÊR£¬ab=0ÊÇ|a|+|b|=|a+b|³ÉÁ¢µÄ³äÒªÌõ¼þ£»
¢Ú¡°Èôx£¾y£¬Ôòxc2£¾yc2¡±µÄÄæÃüÌâÊÇÕæÃüÌ⣻
¢ÛÒÑÖªx£¬y¡ÊR£¬¡°Èôxy=0£¬Ôòx=0»òy=0¡±µÄÄæ·ñÃüÌâÊÇ¡°Èôx¡Ù0»òy¡Ù0£¬Ôòxy¡Ù0¡±£»
¢Ü¡°Èôx∉A¡ÉB£¬Ôòx∉A¡ÈB¡±µÄÄæÃüÌ⣮
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¶¨ÒåÈ«¼¯UµÄ×Ó¼¯AµÄÌØÕ÷º¯ÊýΪfA£¨x£©=$\left\{{\begin{array}{l}{1}\\{0}\end{array}}\right.\begin{array}{l}{£¬x¡ÊA}\\{£¬x¡Ê{∁_U}A}\end{array}$£¬ÕâÀï∁UA±íʾ¼¯ºÏAÔÚÈ«¼¯UÖеIJ¹¼¯£®ÒÑÖªA⊆U£¬B⊆U£¬¸ø³öÒÔϽáÂÛ£º
¢ÙÈôA⊆B£¬Ôò¶ÔÓÚÈÎÒâx¡ÊU£¬¶¼ÓÐfA£¨x£©¡ÜfB£¨x£©£»
¢Ú¶ÔÓÚÈÎÒâx¡ÊU£¬¶¼ÓÐ${f_{{∁_U}A}}$£¨x£©=1-fA£¨x£©£»
¢Û¶ÔÓÚÈÎÒâx¡ÊU£¬¶¼ÓÐfA¡ÉB£¨x£©=fA£¨x£©•fB£¨x£©£»
¢Ü¶ÔÓÚÈÎÒâx¡ÊU£¬¶¼ÓÐfA¡ÈB£¨x£©=fA£¨x£©+fB£¨x£©£®
ÆäÖÐÕýÈ·µÄ½áÂÛÓТ٢ڢۣ®£¨Ð´³öÈ«²¿ÕýÈ·½áÂÛµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¡°m=-1¡±ÊÇ¡°Ö±Ïßmx+£¨2m-1£©y+1=0ºÍÖ±Ïß3x+my+9=0´¹Ö±¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éèf£¨x£©=$\left\{\begin{array}{l}{{a}^{x}£¬x¡Ü1}\\{{x}^{2}-a£¬x£¾1}\end{array}\right.$ÇÒf£¨2$\sqrt{2}$£©=3£¬Ôòa=5£»f£¨f£¨2£©£©=$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®È«¼¯U=R£¬¼¯ºÏA={x|x+1£¼0}£¬B={x|x-3£¼0}£¬ÄÇô¼¯ºÏ£¨∁UA£©¡È£¨∁UB£©=£¨¡¡¡¡£©
A£®{x|-1¡Üx£¼3}B£®{x|-1£¼x£¼3}C£®{x|x¡Ý-1}D£®{x|x£¾3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÉèÊýÁÐ{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬a1=1ÇÒa1£¬a3£®a6³ÉµÈ±ÈÊýÁУ¬ÔòÊýÁÐ{an}µÄ¹«²îd=$\frac{1}{4}$£¬Ç°nÏîºÍ Sn$\frac{1}{8}{n}^{2}+\frac{7}{8}n$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®£¨ÎĿƣ©ÒÑÖªº¯Êýf£¨x£©=$\frac{ax+1}{x+2}$£¬
£¨1£©µ±a=3£¬x¡Ê[-5£¬-3]ʱ£¬Çóf£¨x£©µÄȡֵ·¶Î§£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä£¨-2£¬+¡Þ£©ÊÇÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸