分析 (1)连结DO,EO,推导出AB∥CD,四边形BCDO为平行四边形,从而DO∥BC,进而平面DEO∥平面PBC,由此能证明DE∥平面PBC.
(2)以D为原点,DA为x轴,DB为y轴,过D作平面ABCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角D-BC-P的正弦值.
解答
证明:(1)连结DO,EO,
∵等腰梯形ABCD为⊙O的内接四边形,AB∥CD,PA=AB=2CD=2,
E为PA的中点,连接DE.
∴OE∥PB,DC$\underset{∥}{=}$OB,∴四边形BCDO为平行四边形,∴DO∥BC,
∵EO∩DO=O,PB∩BC=B,EO、DO?平面DEO,
PB、BC?平面PBC,
∴平面DEO∥平面PBC,
∵DE?平面DEO,∴DE∥平面PBC.
解:(2)以D为原点,DA为x轴,DB为y轴,过D作平面ABCD的垂线为z轴,建立空间直角坐标系,
则P(1,0,2),B(0,$\sqrt{3}$,0),C(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),
$\overrightarrow{PB}$=(-1,$\sqrt{3}$,-2),$\overrightarrow{PC}$=(-$\frac{3}{2}$,$\frac{\sqrt{3}}{2}$,-2),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=-x+\sqrt{3}y-2z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=-\frac{3}{2}x+\frac{\sqrt{3}}{2}y-2z=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{n}$=(-3,$\sqrt{3}$,3),
平面BDC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角D-BC-P的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{21}}$=$\frac{\sqrt{21}}{7}$.
sinθ=$\sqrt{1-(\frac{\sqrt{21}}{7})^{2}}$=$\frac{2\sqrt{7}}{7}$.
∴二面角D-BC-P的正弦值为$\frac{2\sqrt{7}}{7}$.
点评 本题考查线面平行的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
| 平均每天运动的时间 | [0,0.5) | [0.5,1) | [1,1.5) | [1.5,2) | [2,2.5) | [2.5,3] |
| 人数 | 2 | 12 | 23 | 18 | 10 | x |
| 平均每天运动的时间 | [0,0.5) | [0.5,1) | [1,1.5) | [1.5,2) | [2,2.5) | [2.5,3] |
| 人数 | 5 | 12 | 18 | 10 | 3 | y |
| 运动达人 | 非运动达人 | 总 计 | |
| 男 生 | |||
| 女 生 | |||
| 总 计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,$\sqrt{2}$] | B. | [1,$\sqrt{3}$] | C. | [1,2] | D. | [1,$\sqrt{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2016 | B. | -2016 | C. | 3024 | D. | -3024 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com