精英家教网 > 高中数学 > 题目详情
3.若平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|2$\overrightarrow{a}$-$\overrightarrow{b}$|≤2$\sqrt{2}$,则$\overrightarrow{a}$•$\overrightarrow{b}$的最小值是-1.

分析 把|2$\overrightarrow{a}$-$\overrightarrow{b}$|≤2$\sqrt{2}$两边平方,可得$4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}≤8+4\overrightarrow{a}•\overrightarrow{b}$,利用基本不等式得到$-4\overrightarrow{a}•\overrightarrow{b}≤8+4\overrightarrow{a}•\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$的最小值可求.

解答 解:∵平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|2$\overrightarrow{a}$-$\overrightarrow{b}$|≤2$\sqrt{2}$,
∴$(2\overrightarrow{a}-\overrightarrow{b})^{2}≤8$,即$4{\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}≤8$,得$4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}≤8+4\overrightarrow{a}•\overrightarrow{b}$,
又$4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}≥2\sqrt{4{\overrightarrow{a}}^{2}•{\overrightarrow{b}}^{2}}=4|\overrightarrow{a}||\overrightarrow{b}|$$≥-4\overrightarrow{a}•\overrightarrow{b}$,
∴$-4\overrightarrow{a}•\overrightarrow{b}≤8+4\overrightarrow{a}•\overrightarrow{b}$,即$\overrightarrow{a}•\overrightarrow{b}≥-1$,
∴$\overrightarrow{a}•\overrightarrow{b}$的最小值是-1,
故答案为:-1.

点评 本题考查平面向量的数量积运算,训练了利用基本不等式求最值,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-3t}\\{y=-2+4t}\end{array}\right.$(t为参数).以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=tanθ.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)若C1与C2交于A,B两点,点P的极坐标为$({2\sqrt{2},-\frac{π}{4}})$,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}中,a1=1,an+1=$\frac{5}{2}$-$\frac{1}{{a}_{n}}$,bn=$\frac{1}{{a}_{n}-2}$,求b1,b2,b3,b4,猜想通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,-6),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\frac{3}{sinx}-\frac{1}{tanx},x∈(0,\frac{π}{2})$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法正确的是(  )
A.当f′(x0)=0时,f(x0)为f(x)的极大值B.当f′(x0)=0时,f(x0)为f(x)的极小值
C.当f′(x0)=0时,f(x0)为f(x)的极值D.当f(x0)为f(x)的极值时,f′(x0)=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 通项公式为an=Atn-1+Bn+1,其中A,B,t 为常数,且t>1,n∈N*.等式(x2+2x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}{{a_n}{b_{2n}}}$ 的值;
(2)若A=1,B=0,是否存在常数t 使得$\sum_{n=1}^{10}{({2{a_n}-{2^n}}){b_{2n}}}$=2046?若存在,求常数t 的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.满足tanx<$\sqrt{3}$且x∈(0,π)的x的集合为{x|0<x<$\frac{π}{3}$,或$\frac{π}{2}$<x<π}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知P(a,1)是角β终边上的一点,且$cosβ=-\frac{{3\sqrt{10}}}{10}$,
(1)求a,sinβ,tanβ的值;   
(2)求$\frac{{sin(\frac{π}{2}+β)cos(-π-β)}}{{sin(\frac{11π}{2}-β)cos(\frac{9π}{2}+β)}}$的值.

查看答案和解析>>

同步练习册答案