| A. | 6 | B. | 7 | C. | 6或7 | D. | 8 |
分析 由等差数列前n项和公式,列出方程求出公差d=2,由此能求出Sn,再利用配方法能求出当Sn取得最小值时,n的值.
解答 解:∵等差数列{an}的前n项和为Sn,a1=-12,S5=S8,
∴$-12×5+\frac{5×4}{2}d=-12×8+\frac{8×7}{2}d$,
解得d=2,
∴Sn=-12n+$\frac{n(n-1)}{2}×2$=n2-13n=(n-$\frac{13}{2}$)2-$\frac{169}{4}$,
∴当Sn取得最小值时,n=6或n=7.
故选:C.
点评 本题考查等差数列的前n项和取最小值时,n的值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
| 年级名次 是否近视 | 前50名 | 后50名 |
| 近视 | 42 | 34 |
| 不近视 | 8 | 16 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{21}-12}}{5}$ | B. | $\frac{{12-\sqrt{21}}}{5}$ | C. | $\frac{{2\sqrt{21}-12}}{5}$ | D. | $\frac{{12-2\sqrt{21}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com