| A. | -$\frac{1}{2}$ | B. | 0 | C. | $\frac{1}{2}$ | D. | 1 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y-$\frac{1}{2}$得y=-2x+z+$\frac{1}{2}$
平移直线y=-2x+z+$\frac{1}{2}$,
由图象可知当直线y=-2x+z+$\frac{1}{2}$经过点B时,
直线y=-2x+z+$\frac{1}{2}$的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=y}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,即B($\frac{1}{2}$,$\frac{1}{2}$),
代入目标函数z=2x+y-$\frac{1}{2}$得z=2×$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{2}$=1.
即目标函数z=2x+y-$\frac{1}{2}$的最大值为1.
故选:D
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<a<1 | B. | a>-1 | C. | -1<a<1 | D. | a<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) |
| $\frac{频率}{组距}$ | 0.005 | 0.010 | 0.020 | 0.010 | 0.005 |
| 物理成绩优秀 | 物理成绩一般 | 合计 | |
| 数学成绩优秀 | 15 | 3 | 18 |
| 数学成绩一般 | 5 | 17 | 22 |
| 合计 | 20 | 20 | 40 |
| P(K2≥K0) | 0.05 | 0.01 | 0.005 | 0.001 |
| K0 | 3.481 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com