精英家教网 > 高中数学 > 题目详情
8.若关于x的方程x2+ax+a2-a-2=0的一根大于1,另一根小于1,则a的取值范围为(  )
A.0<a<1B.a>-1C.-1<a<1D.a<1

分析 利用一元二次方程的根的分布与系数的关系,二次函数的性质,求得a的取值范围.

解答 解:∵关于x的方程x2+ax+a2-a-2=0的一根大于1,另一根小于1,
令f(x)=x2+ax+a2-a-2,
则f(1)=1+a++a2-a-2=a2-1<0,求得-1<a<1,
故选:C.

点评 本题主要考查一元二次方程的根的分布与系数的关系,二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知离散型随机变量ξ~B(n,p),且E(2ξ+1)=5.8,D(ξ)=1.44,那么n,p的值分别为(  )
A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合A={x|x2≥6x},B={x|2x2-x-1>0,x∈Z},则(∁UA)∩B(  )
A.[1,6]B.(1,6)C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知(2$\sqrt{x}$+$\frac{1}{\root{4}{x}}$)n(n∈N*)的展开式中,所有偶数项的二项式系数的和是128.
(1)求n的值;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位在周一到周六的六天中安排4人值夜班,每人至少值一天,至多值两天,值两天的必须是相邻的两天,则不同的值班安排种数为144(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛不喜欢看足球比赛总计
总计
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)从女志愿者中抽取2人参加某场足球比赛服务工作,若其中喜欢看足球比赛的人数为ξ,求ξ的分布列和数学期望.
附:参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,则z=2x+y-$\frac{1}{2}$的最大值是(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列{an}的前n项和为Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,则数列{an}的公差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E为PC的中点.
(I)求证:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案