精英家教网 > 高中数学 > 题目详情
11.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

分析 利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解.

解答 解:P(A)=$\frac{{C}_{5}^{2}+{C}_{4}^{2}}{{C}_{9}^{2}}$=$\frac{16}{36}$,P(AB)=$\frac{{C}_{4}^{2}}{{C}_{9}^{2}}$=$\frac{6}{36}$.
由条件概率公式得P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{3}{8}$.
故选:C.

点评 本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公式的运用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设ξ~B(n,p),若有Eξ=8,Dξ=4,则n,p的值分别为(  )
A.16 和$\frac{1}{2}$B.15和$\frac{1}{4}$C.18和$\frac{2}{3}$D.20和$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在5.0以下的人数,并估计这100名学生视力的中位数(精确到0.1);
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体学生成绩名次在前50名和后50名的学生进行了调查,得到如表1中数据,根据表1及临界值表2中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
表一
 年级名次
是否近视
前50名后50名
近视4234
不近视816
附:临界值表2
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合A={x|x2≥6x},B={x|2x2-x-1>0,x∈Z},则(∁UA)∩B(  )
A.[1,6]B.(1,6)C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知定义域为R的奇函数f(x)满足:当x>0时,f(x)=lnx,则函数g(x)=f(x)-sin4x的零点的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知(2$\sqrt{x}$+$\frac{1}{\root{4}{x}}$)n(n∈N*)的展开式中,所有偶数项的二项式系数的和是128.
(1)求n的值;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位在周一到周六的六天中安排4人值夜班,每人至少值一天,至多值两天,值两天的必须是相邻的两天,则不同的值班安排种数为144(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,则z=2x+y-$\frac{1}{2}$的最大值是(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)当a=1时,讨论f(x)的单调性;
(2)当a>0时,设f(x)在x=x0处取得最小值,求证:f(x0)≤1.

查看答案和解析>>

同步练习册答案