精英家教网 > 高中数学 > 题目详情
10.设f(x)=|x+1|+|x-1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2-4a+12)对任意实数a恒成立,求x的取值范围.

分析 (1)由零点分段法进行分类讨论,可以解得f(x)≤x+2的解集;
(2)将不等式f(x)≤log2(a2-4a+12)对任意实数a恒成立的条件转化为f(x)≤3,代入即可得出a的取值范围.

解答 解:(1)由f(x)≤x+2得|x+1|+|x-1|≤x+2
∵$\left\{{\begin{array}{l}{x≤-1}\\{1-x-(x+1)≤x+2}\end{array}}\right.$或$\left\{{\begin{array}{l}{-1<x<1}\\{1-x+x+1≤x+2}\end{array}}\right.$或$\left\{\begin{array}{l}{x≥1}\\{x-1+x+1≤x+2}\end{array}\right.$…3 分
解得0≤x≤2…4 分
∴f(x)≤x+2的解集为{x|0≤x≤2}…6 分
(2)∵a2-4a+12=(a-2)2+8≥8,∴${log_2}({a^2}-4a+12)≥3$…8 分
故$f(x)≤{log_2}({a^2}-4a+12)$恒成立等价于f(x)≤3…(9分)
即|x+1|+|x-1|≤3,易得$-\frac{3}{2}≤x≤\frac{3}{2}$…(11分)
∴x的范围是$\{x|-\frac{3}{2}≤x≤\frac{3}{2}\}$…12 分

点评 本题考查绝对值不等式的求解方法,考查学生灵活转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设E为?ABCD所在平面内一点,满足$\overrightarrow{CE}$=$\frac{1}{2}$$\overrightarrow{ED}$,则$\overrightarrow{AE}$=(  )
A.$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$B.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{5}{6}$$\overrightarrow{BD}$C.-$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$D.$\frac{5}{6}$$\overrightarrow{AC}$-$\frac{1}{6}$$\overrightarrow{BD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设ξ~B(n,p),若有Eξ=8,Dξ=4,则n,p的值分别为(  )
A.16 和$\frac{1}{2}$B.15和$\frac{1}{4}$C.18和$\frac{2}{3}$D.20和$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知离散型随机变量ξ~B(n,p),且E(2ξ+1)=5.8,D(ξ)=1.44,那么n,p的值分别为(  )
A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个口袋装有大小相同的小球9个,其中红球2个、黑球3个、白球4个,现从中抽取2次,每次抽取一个球.
(Ⅰ)若有放回地抽取2次,求两次所取的球的颜色不同的概率;
(Ⅱ)若不放回地抽取2次,取得红球记2分,取得黑球记1分,取得白球记0分,记两次取球的得分之和为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=(sinx+cosx)2+cos2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在5.0以下的人数,并估计这100名学生视力的中位数(精确到0.1);
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体学生成绩名次在前50名和后50名的学生进行了调查,得到如表1中数据,根据表1及临界值表2中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
表一
 年级名次
是否近视
前50名后50名
近视4234
不近视816
附:临界值表2
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合A={x|x2≥6x},B={x|2x2-x-1>0,x∈Z},则(∁UA)∩B(  )
A.[1,6]B.(1,6)C.{1,2,3,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,则z=2x+y-$\frac{1}{2}$的最大值是(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案