精英家教网 > 高中数学 > 题目详情
9.在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥面ABCD.
(1)求证:PC⊥BD;
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值,
①求此时PA的长度;
②求此时二面角A-DE-B的余弦值的大小.

分析 (1)连接AC,推导出BD⊥AC,BD⊥PA,由此能证明BD⊥PC.
(2)①设PA=h,推导出E(λ,λ,h-hλ),PC⊥BE,设E(x,y,z),由$\overrightarrow{PC}•\overrightarrow{BE}$=0,得$λ=\frac{{{h^2}+1}}{{{h^2}+2}}$,由此能求出体积取到最大值时,PA的长度.
②以A为坐标原点,AB、AD、AP所在直线为轴建系,利用向量法能求出二面角A-DE-B的余弦值.

解答 证明:(1)连接AC,
∵在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥面ABCD,
∴BD⊥AC,BD⊥PA,∴BD⊥平面PAC,
∴BD⊥PC…(4分)
(2)①设PA=h,∵E在PC上,∴设$\overrightarrow{PE}=λ\overrightarrow{PC}$,代入,得E(λ,λ,h-hλ),…(5分)
∵PC⊥面BDE,∴PC⊥BE,
设E(x,y,z),则$\overrightarrow{PC}•\overrightarrow{BE}$=0,
代入,得$λ=\frac{{{h^2}+1}}{{{h^2}+2}}$,…(6分)
∴${V_{E-BCD}}=\frac{1}{3}{S_{△BCD}}•{z_E}=\frac{1}{6}•\frac{h}{{{h^2}+2}}=\frac{1}{6}•\frac{1}{{h+\frac{2}{h}}}$…(7分)
所以体积取到最大值时,$PA=h=\sqrt{2}$…(8分)
②以A为坐标原点,AB、AD、AP所在直线为轴建系,
则A(0,0,0),D(0,1,0),B(1,0,0),E($\frac{3}{4},\frac{3}{4},\frac{{\sqrt{2}}}{4}$),…(9分)
$\overrightarrow{AD}$=(0,1,0),$\overrightarrow{AE}$=($\frac{3}{4},\frac{3}{4},\frac{\sqrt{2}}{4}$),$\overrightarrow{BD}$=(-1,1,0),$\overrightarrow{BE}$=(-$\frac{1}{4}$,$\frac{3}{4},\frac{\sqrt{2}}{4}$),
设面ADE的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=y=0}\\{\overrightarrow{n}•\overrightarrow{AE}=\frac{3}{4}x+\frac{3}{4}y+\frac{\sqrt{2}}{4}z=0}\end{array}\right.$,取x=$\sqrt{2}$,得$\overrightarrow{n}$=($\sqrt{2},0,-3$),
设面BDE的法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=-a+b=0}\\{\overrightarrow{m}•\overrightarrow{BE}=-\frac{1}{4}a+\frac{3}{4}y+\frac{\sqrt{2}}{4}z=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,-$\sqrt{2}$),…(11分)
∴$cos<\vec m,\vec n>=\frac{\vec m•\vec n}{|\vec m|•|\vec n|}=\frac{{2\sqrt{22}}}{11}$,
∴二面角A-DE-B的余弦值为$\frac{2\sqrt{22}}{11}$.…(12分)

点评 本题考查异面直线垂直的证明,考查体积最大时线段长的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,则z=2x+y-$\frac{1}{2}$的最大值是(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)当a=1时,讨论f(x)的单调性;
(2)当a>0时,设f(x)在x=x0处取得最小值,求证:f(x0)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,平面PCD⊥底面ABCD,PD⊥CD,PD=CD,E为PC的中点.
(I)求证:AC⊥PB;
(Ⅱ)求二面角P-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥B-ADEF中,平面ABD⊥平面ADEF,其中AB⊥AD,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2,DE=1.
(1)若C是线段DF的中点,求证:DF⊥平面ABC;
(2)若二面角A-BF-D的平面角的余弦值为$\frac{1}{3}$,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=90°,AB⊥侧面BB1C1C,E为CC1的中点
(1)求证:EA⊥EB1
(2)求二面角A-EB1-A1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,BE=$\frac{1}{2}$EC,AD=2DC,AE=$\sqrt{2}$.
(1)证明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,边长为4的正方形ABED的对边AB、ED的中点为C、F,将此正方形沿着CF折成120°的二面角,连AB、DE得一直三棱柱,则此三棱柱外接球的表面积等于(  )
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的侧面积为(  )
A.(200+100$\sqrt{3}$)cm2B.(200+100π)cm2C.(200+50$\sqrt{5}$π)cm2D.(300+50π)cm2

查看答案和解析>>

同步练习册答案