| A. | 16π | B. | 32π | C. | 8π | D. | 64π |
分析 △ABC中,由余弦定理可得AB,利用正弦定理求出△ABC的外接圆的半径,利用勾股定理求出三棱柱外接球的半径,即可求出棱柱外接球的表面积S.
解答 解:△ABC中,由余弦定理可得AB=$\sqrt{4+4-2×2×2×(-\frac{1}{2})}$=2$\sqrt{3}$,
设△ABC的外接圆的半径为r,则2r=$\frac{2\sqrt{3}}{sin120°}$=4,∴r=2,
设三棱柱外接球的半径为R,则R=$\sqrt{4+4}$=2$\sqrt{2}$,
∴棱柱外接球的表面积S=4πR2=32π,
故选:B.
点评 本题考查棱柱外接球的表面积,考查学生的计算能力,确定三棱柱外接球的半径是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 成绩小于60分的人数 | 成绩不小于60分人数 | 合计 | |
| 初中年级 | |||
| 高中年级 | |||
| 合计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 |
| k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 不优秀 | 总计 | |
| 甲队 | 80 | 40 | 120 |
| 乙队 | 240 | 200 | 440 |
| 合计 | 320 | 240 | 560 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}π$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 3π | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{16}{3}$ | C. | $\frac{20}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{6}$ | B. | 2$\sqrt{21}$ | C. | 6 | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com