精英家教网 > 高中数学 > 题目详情
(理科)已知圆C:x2+y2=1和点Q(2,0),动点M到圆C的切线长与|MQ|的比等于常数λ(λ>0),求动点M的轨迹方程,并说明它表示什么曲线?
考点:曲线与方程
专题:综合题,直线与圆
分析:设点M的坐标为(x,y),欲求动点M的轨迹方程,即寻找x,y间的关系式,结合题中条件列式化简即可得;最后对参数λ分类讨论看方程表示什么曲线即可.
解答: 解:如图,设MN切圆于N,则动点M组成的集合是P={M||MN|=λ|MQ|},式中常数λ>0.因为圆的半径|ON|=1,所以|MN|2=|MO|2-|ON|2=|MO|2-1.
设点M的坐标为(x,y),则
x2+y2-1
(x-2)2+y2

整理得(λ2-1)(x2+y2)-4λ2x+(1+4λ2)=0.
经检验,坐标适合这个方程的点都属于集合P.故这个方程为所求的轨迹方程.
当λ=1时,方程化为x=
5
4
,它表示一条直线,该直线与x轴垂直且交x轴于点(
5
4
,0),
当λ≠1时,方程化为(x-
2λ2
λ2-1
2+y2=
1+3λ2
(λ2-1)2
它表示圆,该圆圆心的坐标为(
2λ2
λ2-1
,0),半径为
1+3λ2
|λ2-1|
点评:本小题考查曲线与方程的关系,轨迹的概念,考查直线与圆的位置关系.直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当0<x<4时,求y=x(8-2x)的最大值;已知x>0,y>0,且
1
x
+
9
y
=1,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子A、B中均装有若干个大小相同的红球和白球,从A中摸出一个红球的概率是
1
3
,从B中摸出一个红球的概率为p.
(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.
①求恰好摸5次停止的概率;
②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望.
(2)若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是
2
5
,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b是两个正实数,证明:
a+b
2
ab
,并指出等号成立的条件.
(2)设a是正实数,利用(1)的结论求复数z=
3a
+(
1
a
-
a
)i模的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2f(x)-3f(-x)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+a2+1,x∈[0,1],若g(a)为f(x)最小值.
(1)求g(a);
(2)当g(a)=5时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a2=6,a5=18;数列{bn}的前n项和是Tn,且Tn+
1
2
bn
=1.
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)记cn=an•bn,设{cn}的前n项和Sn,求证:Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x2+tx+1),(t为常数,且t>-2)
(1)当t=2时,求函数f(x)的定义域;
(2)当x∈[0,2]时,求f(x)的最小值(用t表示);
(3)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2),若存在,求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且a1=
1
2
,Sn=n2an-n(n-1),n=1,2,…
(1)写出Sn与Sn-1的递推关系式(n≥2),并求S2,S3,S4的值;
(2)猜想Sn关于n的表达式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案