精英家教网 > 高中数学 > 题目详情
写出同时具备下列两个条件的一次函数表达式(写出一个即可)
 

(1)y随着x的增大而减小,
(2)图象经过点(1,-3).
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:本题所求的函数是一次函数,由函数的单调性知道,只要一次函数y=kx+b的k<0,函数就是减函数,可令k=-1,再设函数的表达式为y=-x+b,把点(1,-3)代入表达式可求b.
解答: 解:∵要求的函数为一次函数,可设y=kx+b,
要使y随着x的增大而减小,可令k=-1,即y=-x+b,
又图象过点(1,-3),∴-3=-1+b,
∴b=-2,
∴y=-x-2.
点评:本题主要考查函数的单调性,对于一次函数的单调性,只取决于x的系数,然后设适当的函数解析式,用待定系数法求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4(-π)6
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α∥β,AB,CD是两异面直线,且A,C∈α,B,D∈β,AC⊥BD,AC=6,BD=8,M是AB的中点,过M作一个平面γ,交CD于N,且γ∥α,则MN的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别为内角A、B、C的对边,若b=2asinB,求∠A的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项的和Sn,点(n,Sn)在函数f(x)=2x2+4x图象上,
(1)求数列{an}的通项公式;
(2)若函数g(x)=2 -x,数列{bn}满足bn=g(n),记cn=an•bn,求数列{cn}前n项和Tn
(3)是否存在实数λ,使得当x≤λ时,f(x)=-x2+4x-
an
n+1
≤0对任意n∈N*恒成立?若存在,求出最大的实数λ,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为圆C1:x2+y2=2上的动点,过P作x轴的垂线,垂足为Q,点M满足:
2
MQ
=
PQ

(Ⅰ)求点M的轨迹C2的方程;
(Ⅱ)过直线x=2上的点T作圆C1的两条切线,设切点分别为A,B,若直线AB与点M的轨迹C2交于C,D两点,若|
CD
|=λ|
AB
|,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱ABC-A1B1C1的底面边长为3,侧棱AA1=
3
2
3
,D是CB延长线上一点,且BD=BC,则二面角B1-AD-B的大小(  )
A、
π
3
B、
π
6
C、
6
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2+2x,(x≥0)
-x2+2x,(x<0)
,f(t2+2t)+f(t-4)>0,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2(x+4)-3x的零点有(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案