精英家教网 > 高中数学 > 题目详情

【题目】南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试求受奖励的分数线;

(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.

【答案】(1) .

(2) .

【解析】分析:(Ⅰ)由频率分布直方图知,竞赛成绩在在分的人数,设受奖励分数线为,列出方程即可求解;

(Ⅱ)由(Ⅰ)知,利用分层抽样,可知分数在的抽取2人,分数在的抽取3人,设分数在的2人分别为,分数在的3人分别为,利用古典概型及其概率的计算公式,即可求解.

详解:(Ⅰ)由频率分布直方图知,竞赛成绩在分的人数为

竞赛成绩在的人数为

故受奖励分数线在之间,

设受奖励分数线为,则

解得,故受奖励分数线为

(Ⅱ)由(Ⅰ)知,受奖励的20人中,分数在的人数为8,分数在的人数为12,

利用分层抽样,可知分数在的抽取2人,分数在的抽取3人,

设分数在的2人分别为,分数在的3人分别为

所有的可能情况有,满足条件的情况有,所求的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖.在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下:

甲说:“同时获奖”;

乙说:“不可能同时获奖”;

丙说:“获奖”;

丁说:“至少一件获奖”.

如果以上四位同学中有且只有二位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品 B. 作品与作品 C. 作品与作品 D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,已知上,且平面.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线l,设圆C的半径为1,圆心在l上.

若圆心C也在直线上,过A作圆C的切线,求切线方程;

若圆C上存在点M,使,求圆心C的横坐标a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱锥中,底面,,的中点,是线段上的一点,且,连接.

(l)求证:平面

(2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的广告费用x与销售额y的统计数据如表:

广告费用x(万元)

1

2

4

5

销售额y(万元)

6

14

28

32

根据上表中的数据可以求得线性回归方程 = x+ 中的 为6.6,据此模型预报广告费用为10万元时销售额为(
A.66.2万元
B.66.4万元
C.66.8万元
D.67.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有人,则第三组中有疗效的人数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,点E为线段PC的中点,点F在线段AB上. (Ⅰ)若AF= ,求证:CD⊥EF;
(Ⅱ)设平面DEF与平面DPA所成二面角的平面角为θ,试确定点F的位置,使得cosθ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:12=1,12﹣22=﹣3,12﹣22+32=6,12﹣22+32﹣42=﹣10,…由以上等式推测到一个一般的结论:对于n∈N* , 12﹣22+32﹣42+…+(﹣1)n+1n2=

查看答案和解析>>

同步练习册答案