| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 对|2$\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{37}$两边平方,得出$\overrightarrow{a}•\overrightarrow{b}$,代入向量夹角公式计算即可.
解答 解:∵|2$\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{37}$,
∴4${\overrightarrow{a}}^{2}$+${\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}$=37,即16+9-4$\overrightarrow{a}•\overrightarrow{b}$=37,
解得$\overrightarrow{a}•\overrightarrow{b}$=-3.
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=-$\frac{1}{2}$.
∴向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°.
故选:C.
点评 本题考查平面向量的数量积运算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{3}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| B. | 向左平移$\frac{π}{6}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| C. | 向右平移$\frac{π}{6}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 | |
| D. | 向左平移$\frac{π}{3}$个单位长度,纵坐标伸长为原来的$\sqrt{3}$倍 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (7,8) | B. | (8,9) | C. | (9,11) | D. | (12,17) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com