精英家教网 > 高中数学 > 题目详情
3.已知x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-4≤0}\\{2x-y+2≥0}\end{array}\right.$,则z=2x+y的最大值为$2\sqrt{5}$.

分析 作出可行域,平移目标直线可得取最值时的条件,求交点代入目标函数即可.

解答 解:(如图)作出$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-4≤0}\\{2x-y+2≥0}\end{array}\right.$的可行域,
当目标函数与x2+y2=4在第一象限相切的A点时取最大值,
$\frac{|-z|}{\sqrt{{2}^{2}+(-1)^{2}}}$=2,解得z=$±2\sqrt{5}$
故最大值为z=2$\sqrt{5}$.
故答案为:$2\sqrt{5}$.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设复数z=$\frac{7+i}{1-i}$,则|z|=(  )
A.5B.10C.25D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2$\sqrt{3}$,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知|$\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,|2$\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{37}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=loga(2-ax)在(-1,1)上是x的减函数,则a的取值范围是(  )
A.(0,2)B.(1,2)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在图中画出与已知直线异面的直线:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别是角A,B,C的对边,向量$\overrightarrow{m}$=(cos(B-C),sin(B-C)),$\overrightarrow{n}$=(cosC,-sinC),$\overrightarrow{m}$$•\overrightarrow{n}$=$\frac{1}{2}$.
(1)求B的大小;
(2)若a+c=2$\sqrt{3}$,b=$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式(m-2)x2+2(m-2)x-4<0对一切实数x都成立,则实数m的取值范围是-2<m≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow a$,$\overrightarrow b$为非零向量,且|$\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$|+|$\overrightarrow b$|,则一定有(  )
A.$\overrightarrow a$=$\overrightarrow b$B.$\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相同
C.$\overrightarrow a$=-$\overrightarrow b$D.$\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相反

查看答案和解析>>

同步练习册答案