分析 作出可行域,平移目标直线可得取最值时的条件,求交点代入目标函数即可.
解答
解:(如图)作出$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-4≤0}\\{2x-y+2≥0}\end{array}\right.$的可行域,
当目标函数与x2+y2=4在第一象限相切的A点时取最大值,
$\frac{|-z|}{\sqrt{{2}^{2}+(-1)^{2}}}$=2,解得z=$±2\sqrt{5}$
故最大值为z=2$\sqrt{5}$.
故答案为:$2\sqrt{5}$.
点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | (1,2) | C. | (1,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a$=$\overrightarrow b$ | B. | $\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相同 | ||
| C. | $\overrightarrow a$=-$\overrightarrow b$ | D. | $\overrightarrow a$∥$\overrightarrow b$,且$\overrightarrow a$,$\overrightarrow b$方向相反 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com