分析 (1)由向量的数量积的运算和两角和的余弦公式即可求出,
(2)由余弦定理求出ac的值,再根据三角形的面积公式即可求出.
解答 解:(1)∵向量$\overrightarrow{m}$=(cos(B-C),sin(B-C)),$\overrightarrow{n}$=(cosC,-sinC),
∴$\overrightarrow{m}$$•\overrightarrow{n}$=cos(B-C)cosC-sin(B-C)sinC=cos(B-C+C)=cosB=$\frac{1}{2}$,
∵0<B<π,
∴B=$\frac{π}{3}$,
(2)∵a+c=2$\sqrt{3}$,b=$\sqrt{3}$,
由余弦定理可得b2=a2+c2-2accosB=(a+c)2-2ac-2accosB,
∴3=12-3ac,
∴ac=3,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×3×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.
点评 本题考查了向量的数量积和余定理和三角函数的化简,以及三角形的面积公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | lnkx | B. | ln(x+k) | C. | ln$\frac{k}{x}$ | D. | ln$\frac{x+k}{x^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com