精英家教网 > 高中数学 > 题目详情
15.已知命题p:?x∈R,x-2>lgx,命题q:?x∈R,ex>x,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

分析 命题p:取x=10,即可判断出真假.对于命题q:令f(x)=ex-x,利用导数研究其单调性即可判断出真假.

解答 解:命题p:取x=10,则10-2=8>1=lg10,因此?x∈R,x-2>lgx,是真命题.
命题q:令f(x)=ex-x,则f′(x)=ex-1,当x=0时,函数f(x)取得极小值,即最小值,∴f(x)≥f(0)=1>0,因此?x∈R,ex>x,是真命题.
∴p∧q是真命题.
故选:B.

点评 本题考查了不等式的解法、利用导数研究函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,若一几何体的三视图如图所示,则此几何体的体积是12,表面积是36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)=x3-$\frac{1}{2}$x2-2x+c对x∈[-1,2],不等式f(x)<c2,恒成立,则c的取值范围是c<-1或c>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=|ln|x-1||+x2与g(x)=2x有n个交点,它们的横坐标之和为(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合A={x|x2-2x-3≤0},B={x||x|≤1},则A∩(∁RB)=(  )
A.{x|-1≤x≤3}B.{x|1≤x≤3}C.{x|-1≤x≤1}D.{x|1<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且过点($\sqrt{3}$,$\frac{1}{2}$),原点O到经过两点(c,0),(0,b)的直线的距离为$\frac{1}{2}$c.
(Ⅰ)求椭圆E的方程;
(Ⅱ)A为椭圆E上异于顶点的一点,点P满足$\overrightarrow{OP}$=λ$\overrightarrow{AO}$,过点P的直线交椭圆E于B、C两点,且$\overrightarrow{BP}$=$μ\overrightarrow{BC}$,若直线OA,OB的斜率之积为-$\frac{1}{4}$,求证:λ2=2μ-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,B为椭圆上顶点,△BF1F2为正三角形,且P为椭圆上一点,A(0,2$\sqrt{2}$)为椭圆外一点,|PA|-|PF2|的最小值为-1,过点F2且垂直于x轴的直线交椭圆于C,D,直线l1:y=mx+n与圆x2+y2=3相切并且交椭圆于M,N(M,N在直线CD的两侧)两点.
(1)求椭圆的方程.
(2)当四边形CMDN的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的递增区间是(  )
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{π}{2}$]D.[$\frac{3π}{4}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xetx-ex+1,其中t∈R,e是自然对数的底数.
(Ⅰ)若方程f(x)=1无实数根,求实数t的取值范围;
(Ⅱ)若函数f(x)在(0,+∞)内为减函数,求实数t的取值范围.

查看答案和解析>>

同步练习册答案