精英家教网 > 高中数学 > 题目详情
7.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,B为椭圆上顶点,△BF1F2为正三角形,且P为椭圆上一点,A(0,2$\sqrt{2}$)为椭圆外一点,|PA|-|PF2|的最小值为-1,过点F2且垂直于x轴的直线交椭圆于C,D,直线l1:y=mx+n与圆x2+y2=3相切并且交椭圆于M,N(M,N在直线CD的两侧)两点.
(1)求椭圆的方程.
(2)当四边形CMDN的面积最大时,求直线l的方程.

分析 (1)设F1(-c,0),F2(c,0),B(0,b),由题意可得a=2c,再由椭圆的定义和三点共线取得最小值,可得$\sqrt{{c}^{2}+8}$-2a=-1,解方程可得a=2,c=1,求得b,进而得到椭圆方程;
(2)运用直线和圆相切的条件:d=r,求得|CD|=3,联立直线l的方程和椭圆方程,运用韦达定理和判别式大于0,由四边形CMDN的面积S=$\frac{1}{2}$|CD|•|x1-x2|,化简整理,运用基本不等式可得最大值及等号成立的条件,求得直线l的方程.

解答 解:(1)设F1(-c,0),F2(c,0),B(0,b),
由△BF1F2为正三角形,可得|BF1|=|F1F2|,
即有a=2c,①
由椭圆的定义可得2a=|PF1|+|PF2|,
即|PF2|=2a-|PF1|,
则|PA|-|PF2|=|PA|-(2a-|PF1|)=|PA|+|PF1|-2a,
≥|AF1|-2a=$\sqrt{{c}^{2}+8}$-2a,
当A,P,F1共线时,|PA|+|PF1|取得最小值,
即有$\sqrt{{c}^{2}+8}$-2a=-1,②
由①②可得c=1,a=2,b=$\sqrt{3}$,
可得椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由直线l:y=mx+n与圆x2+y2=3相切,
可得$\frac{|n|}{\sqrt{1+{m}^{2}}}$=$\sqrt{3}$,即为n2=3+3m2
令x=1可得y=±$\sqrt{3(1-\frac{1}{4})}$=±$\frac{3}{2}$,即|CD|=3,
设M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}{y=mx+n}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$可得(3+4m2)x2+8mnx+4n2-12=0,
即有△=64m2n2-4(3+4m2)(4n2-12)>0,化为3+4m2>n2
可得3+3m2<3+4m2,即有m≠0,
x1+x2=-$\frac{8mn}{3+4{m}^{2}}$,x1x2=$\frac{4{n}^{2}-12}{3+4{m}^{2}}$,
|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{64{m}^{2}{n}^{2}}{(4{m}^{2}+3)^{2}}-\frac{4(4{n}^{2}-12)}{3+4{m}^{2}}}$=$\frac{4\sqrt{3}|m|}{3+4{m}^{2}}$,
则四边形CMDN的面积S=$\frac{1}{2}$|CD|•|x1-x2|=$\frac{1}{2}$•3•$\frac{4\sqrt{3}|m|}{3+4{m}^{2}}$
=$\frac{6\sqrt{3}}{\frac{3}{|m|}+4|m|}$≤$\frac{6\sqrt{3}}{2\sqrt{12}}$=$\frac{3}{2}$.
当且仅当4|m|=$\frac{3}{|m|}$,即m=±$\frac{\sqrt{3}}{2}$,取得最大值,此时n2=3+$\frac{9}{4}$,
可得n=±$\frac{\sqrt{21}}{2}$,检验可得直线y=$\frac{\sqrt{3}}{2}$x-$\frac{\sqrt{21}}{2}$和y=-$\frac{\sqrt{3}}{2}$x+$\frac{\sqrt{21}}{2}$,符合题意.
(直线y=$\frac{\sqrt{3}}{2}$x+$\frac{\sqrt{21}}{2}$和y=-$\frac{\sqrt{3}}{2}$x-$\frac{\sqrt{21}}{2}$与椭圆交于M,N不在CD的两侧,舍去).

点评 本题考查椭圆方程的求法,注意运用椭圆的定义和三点共线取得最小值,考查四边形面积的最大值及直线方程的求法,注意联立直线方程和椭圆方程,运用韦达定理和判别式大于0,同时考查基本不等式的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.命题“若x>1,则x2>1”的逆否命题是(  )
A.若x>1,则x2≤1B.若x2≤1,则x≤1C.若x≤1,则x2≤1D.若x<1,则x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆的方程为$\frac{x^2}{a^2}$+y2=1(a>1),上顶点为A,左顶点为B,设P为椭圆上一点,则△PAB的最大值为$\sqrt{2}$+1.若已知M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),点Q为椭圆上任意一点,则$\frac{1}{{|{QN}|}}$+$\frac{4}{{|{QM}|}}$的最小值为(  )
A.2B.$\frac{9}{4}$C.3D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:?x∈R,x-2>lgx,命题q:?x∈R,ex>x,则(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设i是虚数单位,若复数a+$\frac{15}{3-4i}$(a∈R)是纯虚数,则a的值为(  )
A.-$\frac{9}{5}$B.-$\frac{12}{5}$C.$\frac{12}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.皖南有两个著名的旅游景区黄山和九华山,甲、乙、丙三名学生各自随机选择其中的一个景区游玩,则他们在同一景区游玩的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.若a∈R,则“a=2”是“(a-1)(a-2)=0”的充分且不必要条件
C.对于命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,则x2+x+1≥0
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}满足a1=1,且对任意的n∈N+都有an+1=a1+an+n,则{$\frac{1}{{a}_{n}}$}的前100项和为(  )
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{101}{100}$D.$\frac{200}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知线段AB的端点B的坐标为(m,n),端点A在圆C:(x+1)2+y2=4上运动,且线段AB的中点M的轨迹方程为(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=1,则m+n等于(  )
A.-1B.7C.1D.-7

查看答案和解析>>

同步练习册答案