精英家教网 > 高中数学 > 题目详情
17.命题“若x>1,则x2>1”的逆否命题是(  )
A.若x>1,则x2≤1B.若x2≤1,则x≤1C.若x≤1,则x2≤1D.若x<1,则x2<1

分析 根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出即可.

解答 解:命题“若x>1,则x2>1”的逆否命题是
命题“若x2≤1,则x≤1”.
故选:B.

点评 本题考查了命题与逆否命题的关系与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足f(x)=f(2-x),当x≠1时,有xf′(x)>f(x)成立;若1<m<2,a=f(2m),b=f(2),c=f(log2m),则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.5个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为(  )
A.14B.35C.70D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,若一几何体的三视图如图所示,则此几何体的体积是12,表面积是36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn,且满足:$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,n∈N+
(1)求an
(2)设Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$,是否存在整数m,使对任意n∈N+,不等式Tn≤m恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,点(1,$\frac{\sqrt{2}}{2}$)在C上.(1)求C的方程;
(2)过点M(0,-$\frac{1}{3}$)的动直线L交椭圆C于A,B两点,试问:在坐标平面上是否存在一个顶点T,使得无论如何L转动,以AB为直径的圆恒过定点T?若存在,求出T点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.试探究:是否存在实数m,使得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的两点关于直线y=4x+m对称?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f(x)=x3-$\frac{1}{2}$x2-2x+c对x∈[-1,2],不等式f(x)<c2,恒成立,则c的取值范围是c<-1或c>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,B为椭圆上顶点,△BF1F2为正三角形,且P为椭圆上一点,A(0,2$\sqrt{2}$)为椭圆外一点,|PA|-|PF2|的最小值为-1,过点F2且垂直于x轴的直线交椭圆于C,D,直线l1:y=mx+n与圆x2+y2=3相切并且交椭圆于M,N(M,N在直线CD的两侧)两点.
(1)求椭圆的方程.
(2)当四边形CMDN的面积最大时,求直线l的方程.

查看答案和解析>>

同步练习册答案