精英家教网 > 高中数学 > 题目详情
9.试探究:是否存在实数m,使得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的两点关于直线y=4x+m对称?若存在,求出实数m的取值范围;若不存在,请说明理由.

分析 根据对称性可知线段AB被直线y=4x+m垂直平分,从而可得直线AB的斜率k=-$\frac{1}{4}$,直线AB与椭圆有两个交点,且AB的中点M在直线y=4x+m,可设直线AB的方程为y=-$\frac{x}{4}$+t,由$\left\{\begin{array}{l}{y=-\frac{x}{4}+t}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,可得13x2-8tx+16(t2-3)=0可求中点M,由△=64t2-4×13×16(t2-3)>0可求b的范围,由中点M在直线y=4x+m可得m,t的关系,从而可求m的范围.

解答 解:假设存在实数m,使得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的两点关于直线y=4x+m对称.
设椭圆上关于直线y=4x+m对称的点A(x1,y1),B(x2,y2),
则根据对称性可知线段AB被直线y=4x+m垂直平分.
可得直线AB的斜率k=-$\frac{1}{4}$,直线AB与椭圆有两个交点,
且AB的中点M(x0,y0)在直线y=4x+m,
可设直线AB的方程为y=-$\frac{x}{4}$+t,
由$\left\{\begin{array}{l}{y=-\frac{x}{4}+t}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,消去y,整理可得13x2-8tx+16(t2-3)=0,
即有x1+x2=$\frac{8t}{13}$,y1+y2=-$\frac{1}{4}$(x1+x2)+2t=-$\frac{2t}{13}$+2t=$\frac{24t}{13}$,
由△=64t2-4×13×16(t2-3)>0可得,-$\frac{\sqrt{13}}{2}$<t<$\frac{\sqrt{13}}{2}$.
所以x0=$\frac{4t}{13}$,y0=$\frac{12t}{13}$,代入直线y=4x+m可得m=-$\frac{4t}{13}$.
则存在这样的m,且m∈(-$\frac{2\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$).

点评 本题主要考查了直线与椭圆的位置关系的应用,解题的关键是灵活应用已知中的对称性设出直线方程,且由中点在y=4x+m上建立m,t之间的关系,还要注意方程的根与系数的关系的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=|lnx|+ax有且仅有两个零点,则实数a=$-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆的方程;
(2)设直线l过椭圆的右焦点F2(l不垂直于坐标轴),且与椭圆交干A,B两点,线段AB的垂直平分线交x轴于点M(0,n),试求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“若x>1,则x2>1”的逆否命题是(  )
A.若x>1,则x2≤1B.若x2≤1,则x≤1C.若x≤1,则x2≤1D.若x<1,则x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知($\frac{1}{{x}^{2}}$+x64展开式中的常数项为a,且X~N(1,1),则P(3<X<a)=(  )
(附:若随机变量X~N)(μ,σ2),则P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%,
P(μ-3σ<X<μ+3σ)=99.74%)
A.0.043B.0.0215C.0.3413D.0.4772

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$\frac{1}{1-i}$=a+bi(a,b∈R),则a+b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知以角C为钝角的三角形ABC内角A、B、C的对边分别为a、b、c,$\vec m$=(a,2c),$\vec n$=($\sqrt{3}$,-sinA),且$\vec m$与$\vec n$垂直.
(1)求角C的大小;
(2)求cosA+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆的方程为$\frac{x^2}{a^2}$+y2=1(a>1),上顶点为A,左顶点为B,设P为椭圆上一点,则△PAB的最大值为$\sqrt{2}$+1.若已知M(-$\sqrt{3}$,0),N($\sqrt{3}$,0),点Q为椭圆上任意一点,则$\frac{1}{{|{QN}|}}$+$\frac{4}{{|{QM}|}}$的最小值为(  )
A.2B.$\frac{9}{4}$C.3D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.若a∈R,则“a=2”是“(a-1)(a-2)=0”的充分且不必要条件
C.对于命题p:?x0∈R,使得x02+x0+1<0,则¬p:?x∈R,则x2+x+1≥0
D.命题“若am2<bm2,则a<b”的逆命题是真命题

查看答案和解析>>

同步练习册答案