精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=|lnx|+ax有且仅有两个零点,则实数a=$-\frac{1}{e}$.

分析 由函数零点的定义列出方程并移项,作出函数f(x)和直线y=-ax的图象,利用导数的几何意义求出对应的切线方程以及斜率,利用图象即可求出答案.

解答 解:由f(x)=|lnx|+ax=0得,|lnx|=-ax,
作出函数f(x)和y=-ax的图象如图:
由图得,当直线y=-ax与y=lnx在x>1时相切时,
函数f(x)有两个不相等的零点,
设切点P的坐标为(x0,y0),
∵f′(x)=$\frac{1}{x}$,∴f′(x0)=$\frac{1}{{x}_{0}}$,
则切线方程为y-y0=$\frac{1}{{x}_{0}}$(x-x0),即y=$\frac{1}{{x}_{0}}$•x+y0-1=$\frac{1}{{x}_{0}}$•x+lnx0-1,
∵切线方程为y=-ax,
∴-a=$\frac{1}{{x}_{0}}$且lnx0-1=0,解得x0=e,则a=$-\frac{1}{e}$,
∴要使函数f(x)有且仅有两个零点,则a=$-\frac{1}{e}$,
故答案为:$-\frac{1}{e}$.

点评 本题考查函数的零点与图象交点之间的转化,导数的几何意义,考查转化思想和数形结合思想,正确转化和画出图象是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列四个图象中,有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-9)x+1(a∈R,a≠0)的导函数y=f′(x)的图象,则f(1)=(  )
A.$\frac{13}{3}$B.$\frac{4}{3}$C.-$\frac{5}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足f(x)=f(2-x),当x≠1时,有xf′(x)>f(x)成立;若1<m<2,a=f(2m),b=f(2),c=f(log2m),则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(3,0),过抛物线y2=4x上一点P的直线与直线x=-1垂直相交于点B,若|PB|=|PA|,则点P的横坐标为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在[0,+∞)的函数f(x)的导函数为f′(x),对于任意的x≥0,恒有f′(x)>f(x),a=$\frac{f(2)}{{e}^{2}}$,b=$\frac{f(3)}{{e}^{3}}$,则a,b的大小关系是(  )
A.a>bB.a<bC.a=bD.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{1}{x}$-ax,a∈R.
(Ⅰ)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ) 若f(x)有两个不同的零点x1,x2,试比较x1x2与2e2的大小.
(参考数据,e≈2.7,取ln2≈0.7,$\sqrt{2}$≈1.4,)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.5个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为(  )
A.14B.35C.70D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.试探究:是否存在实数m,使得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的两点关于直线y=4x+m对称?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案