精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=lnx-$\frac{1}{x}$-ax,a∈R.
(Ⅰ)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ) 若f(x)有两个不同的零点x1,x2,试比较x1x2与2e2的大小.
(参考数据,e≈2.7,取ln2≈0.7,$\sqrt{2}$≈1.4,)

分析 (Ⅰ)求出函数的导数,分离参数,结合函数的单调性求出a的范围即可;
(Ⅱ)求函数的导数,构造函数,根据x1、x2为函数f(x)的两个不同的零点,即可证明不等式.

解答 解:(Ⅰ)由题意得对?x≥1,
$f'(x)=\frac{1}{x}+\frac{1}{x^2}-a≤0$恒成立,…(1分)
即$a≥(\frac{1}{x}+\frac{1}{x^2}{)_{max}}$,…(2分)
令$t=\frac{1}{x},\;(0<t≤1)$,
又$g(t)={t^2}+t={(t+\frac{1}{2})^2}-\frac{1}{4}$在(0,1]递增,
∴gmax=g(1)=2,…(3分)
∴a≥2故实数a的取值范围为[2,+∞)…(4分)
(2)由题意知$ln{x_1}-\frac{1}{x_1}=a{x_1}$,$ln{x_2}-\frac{1}{x_2}=a{x_2}$,…(5分)
两式相加得$ln{x_1}{x_2}-\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}=a({x_1}+{x_2})$,
两式相减得$ln\frac{x_2}{x_1}-\frac{{{x_1}-{x_2}}}{{{x_1}{x_2}}}=a({x_2}-{x_1})$,…(6分)
即$\frac{{ln\frac{x_2}{x_1}}}{{{x_2}-{x_1}}}+\frac{1}{{{x_1}{x_2}}}=a$,
∴$ln{x_1}{x_2}-\frac{{{x_1}+{x_2}}}{{{x_1}{x_2}}}=(\frac{{ln\frac{x_2}{x_1}}}{{{x_2}-{x_1}}}+\frac{1}{{{x_1}{x_2}}})({x_1}+{x_2})$,
即$ln{x_1}{x_2}-\frac{{2({x_1}+{x_2})}}{{{x_1}{x_2}}}=\frac{{{x_1}+{x_2}}}{{{x_2}-{x_1}}}ln\frac{x_2}{x_1}$,…(7分)
不妨令0<x1<x2,记$t=\frac{x_2}{x_1}>1$,
令$F(t)=lnt-\frac{2(t-1)}{t+1}(t>1)$,则$F'(t)=\frac{{{{(t-1)}^2}}}{t(t+1)}>0$,
∴$F(t)=lnt-\frac{2(t-1)}{t+1}$在(1,+∞)上单调递增,
则$F(t)=lnt-\frac{2(t-1)}{t+1}>F(1)=0$,
∴$lnt>\frac{2(t-1)}{t+1}$,则$ln\frac{x_2}{x_1}>\frac{{2({x_2}-{x_1})}}{{{x_1}+{x_2}}}$,…(9分)
∴$ln{x_1}{x_2}-\frac{{2({x_1}+{x_2})}}{{{x_1}{x_2}}}=\frac{{{x_1}+{x_2}}}{{{x_2}-{x_1}}}ln\frac{x_2}{x_1}>2$,
又$ln{x_1}{x_2}-\frac{{2({x_1}+{x_2})}}{{{x_1}{x_2}}}<ln{x_1}{x_2}-\frac{{4\sqrt{{x_1}{x_2}}}}{{{x_1}{x_2}}}=ln{x_1}{x_2}-\frac{4}{{\sqrt{{x_1}{x_2}}}}=2ln\sqrt{{x_1}{x_2}}-\frac{4}{{\sqrt{{x_1}{x_2}}}}$,
∴$2ln\sqrt{{x_1}{x_2}}-\frac{4}{{\sqrt{{x_1}{x_2}}}}>2$,即$ln\sqrt{{x_1}{x_2}}-\frac{2}{{\sqrt{{x_1}{x_2}}}}>1$,…(10分)
令$G(x)=lnx-\frac{2}{x}$,则x>0时,$G'(x)=\frac{1}{x}+\frac{2}{x^2}>0$,
∴G(x)在(0,+∞)上单调递增,
又$ln\sqrt{2}e-\frac{2}{{\sqrt{2}e}}=\frac{1}{2}ln2+1-\frac{{\sqrt{2}}}{e}≈0.85<1$,…(11分)
又$G(\sqrt{2e})=ln\sqrt{2}e-\frac{2}{{\sqrt{2}e}}=\frac{1}{2}ln2+1-\frac{{\sqrt{2}}}{e}≈0.85<1$
∴$G(\sqrt{{x_1}{x_2}})=ln\sqrt{{x_1}{x_2}}-\frac{2}{{\sqrt{{x_1}{x_2}}}}>1>ln\sqrt{2}e-\frac{2}{{\sqrt{2}e}}$,
$G(\sqrt{{x_1}{x_2}})=ln\sqrt{{x_1}{x_2}}-\frac{2}{{\sqrt{{x_1}{x_2}}}}>1>ln\sqrt{2}e-\frac{2}{{\sqrt{2}e}}=G(\sqrt{2e})$
又因为G(x)在(0,+∞)上单调递增,
则$\sqrt{{x_1}{x_2}}>\sqrt{2}e$,即${x_1}{x_2}>2{e^2}$.…(12分)

点评 本题主要考查函数单调性和导数之间的关系,考查考生的应用,运算量大,综合性较强,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知曲线=x3上一点P(2,8),则曲线在P点处的切线的斜率为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}$(1-2cos2x+$\sqrt{3}$)-$\sqrt{3}$sin2(x-$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若f(x0)=$\frac{\sqrt{2}}{2}$,x0∈[$\frac{π}{6}$,$\frac{π}{3}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=|lnx|+ax有且仅有两个零点,则实数a=$-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为(-∞,0),其导函数f′(x),且满足f(x)+f′(x)<0,则不等式ex+2019f(x+2015)<f(-4)的解集为{x|-2019<x<-2015}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x≠1时,有(x-1)•f′(x)<0,设a=f(tan$\frac{5}{4}$π),b=f(log32),c=f(0.2-3),则(  )
A.a<b<cB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列不定积分:
(1)∫(sec2x-2x+2)dx;
(2)∫x2$\sqrt{x}$dx;
(3)∫(1+tan2x)dx;
(4)∫(x2+1)2dx;
(5)∫(ex-$\frac{1}{{x}^{2}}$)dx;
(6)∫(cosx+$\frac{1}{x}$)dx;
(7)∫$\frac{1+2{x}^{2}}{{x}^{2}(1+{x}^{2})}$dx;
(8)∫$\frac{cos2x}{si{n}^{2}xco{s}^{2}x}$dx;
(9)∫$\frac{1}{1+cos2x}$dx;
(10)∫sin2$\frac{x}{2}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆的方程;
(2)设直线l过椭圆的右焦点F2(l不垂直于坐标轴),且与椭圆交干A,B两点,线段AB的垂直平分线交x轴于点M(0,n),试求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知以角C为钝角的三角形ABC内角A、B、C的对边分别为a、b、c,$\vec m$=(a,2c),$\vec n$=($\sqrt{3}$,-sinA),且$\vec m$与$\vec n$垂直.
(1)求角C的大小;
(2)求cosA+cosB的取值范围.

查看答案和解析>>

同步练习册答案