精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{1}{2}$(1-2cos2x+$\sqrt{3}$)-$\sqrt{3}$sin2(x-$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若f(x0)=$\frac{\sqrt{2}}{2}$,x0∈[$\frac{π}{6}$,$\frac{π}{3}$],求cos2x0的值.

分析 (Ⅰ)由三角函数中的恒等变换应用化简可得解析式f(x)=sin(2x-$\frac{π}{6}$),根据三角函数的周期公式,求得f(x)的最小正周期,
(Ⅱ)f(x0)=$\frac{\sqrt{2}}{2}$,求出sin(2x0-$\frac{π}{6}$)的值,根据x0的取值范围求出cos(2x0-$\frac{π}{6}$),2x0=2x0-$\frac{π}{6}$+$\frac{π}{6}$利用两角差的余弦函数求解即可.

解答 解:(Ⅰ)f(x)=$\frac{1}{2}$(-cos2x+$\sqrt{3}$)-$\frac{\sqrt{3}}{2}$[1-cos2(x-$\frac{π}{4}$)],
=-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$cos2(x-$\frac{π}{4}$),
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x,
=sin(2x-$\frac{π}{6}$),
则f(x)的最小正周期T=$\frac{2π}{ω}$=π;
(Ⅱ)f(x0)=$\frac{\sqrt{2}}{2}$,sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,
x0∈[$\frac{π}{6}$,$\frac{π}{3}$],2x0-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$],
∴cos(2x0-$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$,
cos2x0=cos[(2x0-$\frac{π}{6}$)+$\frac{π}{6}$]=cos(2x0-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(2x0-$\frac{π}{6}$)sin$\frac{π}{6}$,
=$\frac{\sqrt{2}}{2}$($\frac{\sqrt{3}}{2}$-$\frac{1}{2}$),
=$\frac{\sqrt{6}-\sqrt{2}}{4}$.
∴cos2x0=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 本题考查二倍角公式、诱导公式及辅助角公式,函数的周期的求法,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=x3-4x2+5x-4.求曲线f(x)在点(2,f(2))处的切线方程x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方形ABCD的边长为2,点E是AB边上的中点,则$\overrightarrow{DE}•\overrightarrow{DC}$的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),O为坐标原点.
(Ⅰ)证明:kAM+kBM=0;
(Ⅱ)若直线l的斜率为k(k<0),求$\frac{k}{{k}_{AM}•{k}_{BM}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足f(x)=f(2-x),当x≠1时,有xf′(x)>f(x)成立;若1<m<2,a=f(2m),b=f(2),c=f(log2m),则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(3,0),过抛物线y2=4x上一点P的直线与直线x=-1垂直相交于点B,若|PB|=|PA|,则点P的横坐标为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{1}{x}$-ax,a∈R.
(Ⅰ)若函数f(x)在[1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ) 若f(x)有两个不同的零点x1,x2,试比较x1x2与2e2的大小.
(参考数据,e≈2.7,取ln2≈0.7,$\sqrt{2}$≈1.4,)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn,且满足:$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,n∈N+
(1)求an
(2)设Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$,是否存在整数m,使对任意n∈N+,不等式Tn≤m恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案