精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定

分析 造函数g(x)=$\frac{f(x)}{{e}^{x}}$,通过求导判断其单调性,从而确定选项.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,由题意,
则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0,
从而g(x)在R上单调递减,
∴g(2016)<g(2015).
即 $\frac{f(2016)}{{e}^{2016}}$<$\frac{f(2015)}{{e}^{2015}}$,
∴e2015f(2016)<e2016f(2015),
即ef(2015)<f(2016),
故选:A.

点评 本题是构造函数的常见类型,大多数题型是结合着选项中的结构和题中的条件来构造函数,形式灵活多变,考生需要多看多做多总结,才容易掌握此题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,且离心率为$\frac{1}{2}$,点P为椭圆上一动点,△F1PF2面积的最大值为$\sqrt{3}$.
(1)求椭圆的方程;
(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆相交于A,B两点,连结A1A,A1B并延长分别交直线x=4于P,Q两点,问$\overrightarrow{P{F_2}}•\overrightarrow{Q{F_2}}$是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知曲线=x3上一点P(2,8),则曲线在P点处的切线的斜率为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设向量$\overrightarrow{OA}=(x+2,{x^2}-\sqrt{3}cos2α)$,$\overrightarrow{OB}=(y,\frac{y}{2}+sinαcosα)$,其中x,y,α为实数,若$\overrightarrow{OA}=2\overrightarrow{OB}$,则$\frac{x}{y}$的取值范围为(  )
A.[-6,1]B.[-1,6]C.[4,8]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函数f(x)存在单调减区间,求实数a的取值范围;
(Ⅱ)若a=0,证明:$?x∈[{-1,\frac{1}{2}}]$,总有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy中,有一定点A(1,1),若OA的垂直平分线过抛物线C:y2=2px(p>0)的焦点,则抛物线C的方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1}{2}$(1-2cos2x+$\sqrt{3}$)-$\sqrt{3}$sin2(x-$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若f(x0)=$\frac{\sqrt{2}}{2}$,x0∈[$\frac{π}{6}$,$\frac{π}{3}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=|lnx|+ax有且仅有两个零点,则实数a=$-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(α>b>0)的左、右焦点为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆的方程;
(2)设直线l过椭圆的右焦点F2(l不垂直于坐标轴),且与椭圆交干A,B两点,线段AB的垂直平分线交x轴于点M(0,n),试求n的取值范围.

查看答案和解析>>

同步练习册答案