精英家教网 > 高中数学 > 题目详情
18.设向量$\overrightarrow{OA}=(x+2,{x^2}-\sqrt{3}cos2α)$,$\overrightarrow{OB}=(y,\frac{y}{2}+sinαcosα)$,其中x,y,α为实数,若$\overrightarrow{OA}=2\overrightarrow{OB}$,则$\frac{x}{y}$的取值范围为(  )
A.[-6,1]B.[-1,6]C.[4,8]D.(-∞,1]

分析 根据向量的数量关系列出方程组,得出x,y的关系,根据三角函数的范围得出y的范围,从而得出$\frac{x}{y}$的范围.

解答 解:∵$\overrightarrow{OA}=2\overrightarrow{OB}$,
∴$\left\{\begin{array}{l}{x+2=2y}\\{{x}^{2}-\sqrt{3}cos2α=y+2sinαcosα}\end{array}\right.$,
由x+2=2y得x=2y-2,
由x2-$\sqrt{3}$cos2α=y+2sinαcosα得:x2-y=$\sqrt{3}$cos2α+sin2α=2sin(2α+$\frac{π}{3}$).
∴4y2-9y+4=2sin(2α+$\frac{π}{3}$).
∴-2≤4y2-9y+4≤2,解得$\frac{1}{4}≤y≤2$.
∴$\frac{x}{y}$=$\frac{2y-2}{y}=2-\frac{2}{y}$.
∴当y=$\frac{1}{4}$时,$\frac{x}{y}$取得最小值-6,当y=2时,$\frac{x}{y}$取得最大值1.
故选:A.

点评 本题考查了平面向量数乘运算的意义,三角函数的恒等变换,二次不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.数列{an}的通项公式an=ncos$\frac{π}{2}$+1,前n项和为Sn,则S2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个图象中,有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-9)x+1(a∈R,a≠0)的导函数y=f′(x)的图象,则f(1)=(  )
A.$\frac{13}{3}$B.$\frac{4}{3}$C.-$\frac{5}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$1+x+{x^2}+…{x^7}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_7}{(x-1)^7}$,则a2=(  )
A.112B.56C.28D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方形ABCD的边长为2,点E是AB边上的中点,则$\overrightarrow{DE}•\overrightarrow{DC}$的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=1+x-alnx(a∈R)
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当f(x)有最小值,且最小值大于2a时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的可导函数,f′(x)为其导函数,若对于任意实数,都有f(x)>f′(x),其中e为自然对数的底数,则(  )
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)与f(2016)大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足f(x)=f(2-x),当x≠1时,有xf′(x)>f(x)成立;若1<m<2,a=f(2m),b=f(2),c=f(log2m),则a,b,c大小关系为a>b>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.5个大学生分配到三个不同的村庄当村官,每个村庄至少有一名大学生,其中甲村庄恰有一名大学生的分法种数为(  )
A.14B.35C.70D.100

查看答案和解析>>

同步练习册答案