精英家教网 > 高中数学 > 题目详情
4.已知($\frac{1}{{x}^{2}}$+x64展开式中的常数项为a,且X~N(1,1),则P(3<X<a)=(  )
(附:若随机变量X~N)(μ,σ2),则P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%,
P(μ-3σ<X<μ+3σ)=99.74%)
A.0.043B.0.0215C.0.3413D.0.4772

分析 根据二项式定理求出a,进而根据正态分布的对称性,结合已知中的公式,得到答案.

解答 解:($\frac{1}{{x}^{2}}$+x64展开式中通项为:${C}_{4}^{r}$x-2(4-r)•x6r=${C}_{4}^{r}$x8r-8
令8r-8=0,则r=1,
故a=${C}_{4}^{1}$=4,
∵X~N(1,1),
则P(-1<X<3)=95.44%,
则P(-2<X<4)=99.74%,
∴P(3<X<4)=$\frac{1}{2}$(99.74%-95.44%)=0.0215,
故选:B.

点评 本题考查的知识点是正态分布曲线的特点及曲线表示的几何意义,二项式定理的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知点A(3,0),过抛物线y2=4x上一点P的直线与直线x=-1垂直相交于点B,若|PB|=|PA|,则点P的横坐标为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是$\frac{10}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn,且满足:$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,n∈N+
(1)求an
(2)设Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$,是否存在整数m,使对任意n∈N+,不等式Tn≤m恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则$\frac{{b}^{2}+1}{a}$的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.试探究:是否存在实数m,使得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上有不同的两点关于直线y=4x+m对称?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下面的伪代码输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,过中线AD的中点E作一条直线分别交AB,AC于M,N两点,若$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,(x>0,y>0,则4x+y的最小值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,A=60°,AC=2,D为边BC的中点,AD=$\frac{\sqrt{7}}{2}$,则△ABC的面积是2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案