精英家教网 > 高中数学 > 题目详情
14.函数f(x)=$\frac{lnx}{x}$-2的图象在点(1,-2)处的切线方程为(  )
A.x-y-3=0B.2x+y=0C.x+y+1=0D.2x-y-4=0

分析 求函数的导数,利用导数的几何意义即可求出切线方程.

解答 解:函数的导数为f′(x)=$\frac{\frac{1}{x}•x-lnx}{{x}^{2}}=\frac{1-lnx}{{x}^{2}}$,
则f′(1)=1,
则对应的切线方程为y+2=x-1,
故x-y-3=0,
故选:A

点评 本题主要考查函数切线的求解,根据导数的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=mlnx-$\frac{1}{2}x+\frac{1}{2x}.({m∈R})$.
(I)当m=$\frac{5}{4}$时,求f(x)的极值;
(Ⅱ)设A、B是曲线y=f(x)上的两个不同点,且曲线在A、B两点处的切线均与x轴平行,直线AB的斜率为k,是否存在m,使得m-k=1?若存在,请求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线y=$\frac{1}{2}$x+b是曲线y=lnx在点P(x0,y0)处的切线,
(1)求切点P的坐标;
(2)求b值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知曲线C:y=ex+a 与直线y=ex+3相切,其中e为自然对数的底数.
(1)求实数a的值;
(2)求曲线C上的点P到直线y=x-4的距离的最小值,并求出取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{m}{x+1}$+nlnx(m,n为常数),在x=1处的切线方程为x+y-2=0.
(Ⅰ)求f(x)的解析式并写出定义域;
(Ⅱ)若?x∈[$\frac{1}{e}$,1],使得对?t∈[$\frac{1}{2}$,2]上恒有f(x)≥t3-t2-2at+2成立,求实数a的取值范围;
(Ⅲ)若g(x)=f(x)-ax-$\frac{2}{x+1}$(a∈R)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=x3-3ax+b(a≠0)
(1)若曲线y=f(x)在点(2,f(2))处的切线方程是y=3x+2,求a,b的值
(2)求函数f(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,空间四边形ABCD中,M、N分别是BC、DA上的点,且BM:MC=AN:ND=1:2,又AB=5,CD=3,MN与AB、CD所成的角分别为α,β,则之间的大小关系为(  )
A.α<βB.α>βC.α=βD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图是导函数y=f′(x)的图象,在标记的点中,在哪一点处
(1)导函数y=f′(x)有极大值?
(2)导函数y=f′(x)有极小值?
(3)函数y=f(x)有极大值?
(4)函数y=f(x)有极小值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+1n(x+1).
(Ⅰ)当时a=-$\frac{1}{4}$时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,函数y=f(x)的图象上的点都在$\left\{\begin{array}{l}x≥0\\ y-x≤0\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

同步练习册答案