精英家教网 > 高中数学 > 题目详情
已知An(n,an)为函数y1=图象上的点,Bn(n,bn)为函数y2=x图象上的点,设cn=an-bn,其中n∈N*.

(1)求证:数列{cn}既不是等差数列也不是等比数列;

(2)试比较cn与cn+1的大小.

答案:(1)证明:依题意有:an=,bn=n,∴cn=-n,

假设{cn}是等差数列,则2c2=c1+c3,

∴2(-2)=-1+-3,即矛盾.故{cn}不是等差数列.

若{cn}是等比数列,则c22=c1·c3.

∴(-2)2=(-1)·(-3),即=47矛盾.∴{cn}不是等比数列.

∴{cn}既非等差数列,又非等比数列.                                             

(2)解:∵对一切n∈N*有cn=-n>0,

<1.

∴cn>cn+1.

或令f(x)=-x(x>0)利用倒数证明f(x)是减函数也可以证明cn>cn+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•蓝山县模拟)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列An(xn,0),n∈N*,其中x1=0,x2=2,A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,…,
(Ⅰ)写出xn与xn-1、xn-2之间的关系式(n≥3);
(Ⅱ)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(ⅰ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(ⅱ)设A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?说明理由;
(Ⅲ)记I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区一模)已知集合Sn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).对于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定义
AB
=(b1-a1b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A与B之间的距离为d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)当n=5时,设A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)证明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,则d(A,B)+d(B,C)=d(A,C);
(Ⅲ)记I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}(n是正整数)是首项为a1,公比为q的等比数列.

(1)求和:

(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.

 

查看答案和解析>>

同步练习册答案