精英家教网 > 高中数学 > 题目详情
7.如图,四边形ABCD内接于圆,AB=AC,直线MN切圆于点C,BD∥MN交AC于点E.若AB=6,BC=4,则AE的长为$\frac{10}{3}$.

分析 利用弦切角定理、平行线的性质、相似三角形的判定和性质即可得出.

解答 解:直线MN切⊙O于点C,∴∠MCB=∠BAC,
∵BE∥MN交AC于点E,∴∠MCB=∠EBC.
∴△ABC∽△BCE.
∴$\frac{AB}{BC}=\frac{BC}{EC}$,
∵AB=6,BC=4,
∴EC=$\frac{8}{3}$.
∴AE=6-$\frac{8}{3}$=$\frac{10}{3}$.
故答案为:$\frac{10}{3}$.

点评 熟练掌握弦切角定理、平行线的性质、相似三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求值:$\root{3}{1+\frac{2}{3}\sqrt{\frac{7}{3}}}$+$\root{3}{1-\frac{2}{3}\sqrt{\frac{7}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}是等差数列,bn=$(\frac{1}{2})^{{a}_{n}}$,若b1+b2+b3=$\frac{21}{8}$,b1•b2•b3=$\frac{1}{8}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图的程序框图,那么输出S的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cos(α+$\frac{π}{3}$)=$\frac{1}{3}$,则cos($\frac{π}{3}$-2α)=(  )
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.以下判断正确的是(  )
A.函数y=f(x)为R上的可导函数,则f'(x0)=0是x0为函数f(x)极值点的充要条件.
B.若命题p:?x°∈R,x°2-x°+1<0,则?p:?x∈R,x2-x+1>0
C.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D.“已知不等式$\frac{1}{x}+\frac{9}{y}$>$\frac{k}{x+y}$对任意正数x、y恒成立”的充要条件为“k<16”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ln(4-x2),则f(x)的定义域为(-2,2),当x=0时,f(x)有最大值ln4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=$\frac{{x}^{2}}{2}$+ax+2lnx,(a∈R)在x=2处取得极值.
(Ⅰ)求实数a的值及函数f(x)单调区间;
(Ⅱ)方程f(x)=m有三个实数x1,x2,x3(x1<x2<x3),求证:x3-x1<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}中,公比q=4,a1•a2•a3…•a30=430,那么a1•a4•a7…a28=4270

查看答案和解析>>

同步练习册答案