精英家教网 > 高中数学 > 题目详情
设当x∈R时, f(x)是减函数, 那么当x∈R时, 函数f(ax) (其中a>0且a≠1)是

[  ]

A.增函数

B.减函数

C.当0<a<1时是增函数, 当a>1时是减函数

D.当0<a<1时是减函数, 当a>1时是增函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R)满足下列条件:
①当x∈R时,f(x)的最小值为0,且图象关于直线x=-1对称;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函数f(x)的解析式;
(3)若f(x)在区间[m-1,m]上恒有|f(x)-x|≤1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:
(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x:
(2)当x∈(0,2)时,f(x)≤(
x+12
)2

(3)f(x)在R上的最小值为0.
求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-2ax+2,(a∈R)
(1)当x∈R时,f(x)≥a恒成立,求a的范围;
(2)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:013

设当x∈R时,f(x)是减函数,那么当x∈R时,函数是   

[  ]

A.增函数

B.减函数

C.当0<a<1时是增函数,当a>1时是减函数

D.当0<a<1时是减函数,当a>1时是增函数

查看答案和解析>>

同步练习册答案