| A. | z的最小值为-1 | B. | |OP|的最小值为$\sqrt{6}$ | C. | z的最大值为-15 | D. | |PQ|的最大值为$2\sqrt{2}$ |
分析 画出约束条件的可行域,利用目标函数的几何意义,判断求解即可.
解答
解:不等式$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$表示的平面区域为Ω,如图:
可得A(1,2),B(3,2),C(3,4).
z=-7x+3y,经过可行域的A点时,取得最大值:-7+6=-1.
经过可行域的B点时,取得最小值:-21+6=-15.
A到坐标原点的距离最小:$\sqrt{5}$.
AC两点的距离最大:2$\sqrt{2}$.即|PQ|的最大值为:2$\sqrt{2}$.
故选:D.
点评 本题考查线性规划的简单应用,考查转化思想以及数形结合思想的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| 技术改造的月份x | 1 | 2 | 3 | 4 |
| 煤炭消耗量y | 4.5 | 4 | 3 | 2.5 |
| A. | $\widehat{y}$=0.7x+5.25 | B. | $\widehat{y}$=-0.6x+5.25 | C. | $\widehat{y}$=-0.7x+6.25 | D. | $\widehat{y}$=-0.7x+5.25 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{1}{16}$ | B. | x=-$\frac{1}{16}$ | C. | x=$\frac{1}{2}$ | D. | x=-$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$] | B. | (1,$\frac{3}{2}$] | C. | [0,$\frac{3}{2}$] | D. | (0,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{2}sin(x+\frac{π}{3})$ | B. | $f(x)=\sqrt{2}sin(x-\frac{π}{3})$ | C. | $f(x)=\sqrt{2}sin(2x+\frac{π}{3})$ | D. | $f(x)=\sqrt{2}sin(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com