精英家教网 > 高中数学 > 题目详情
5.函数y=lg($\frac{2}{1-x}$-a)的图象关于原点对称,则a等于(  )
A.1B.0C.-1D.-2

分析 根据函数y=ln($\frac{2}{1-x}$-a)的图象关于原点对称知,函数为奇函数,故f(0)=0,求得a的值.

解答 解:当x=0时,y=lg(2-a)=0,
∴a=1,
经检验a=1符合题意,
故选:A.

点评 本题主要考查奇函数的性质,即奇函数的图象关于原点对称.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若不等式$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$表示的平面区域为Ω,P、Q均为Ω内一点,O为坐标原点,z=-7x+3y,则下列判断正确的是(  )
A.z的最小值为-1B.|OP|的最小值为$\sqrt{6}$C.z的最大值为-15D.|PQ|的最大值为$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=x3-$\frac{1}{x}$的导数是(  )
A.y′=3x2-$\frac{1}{{x}^{2}}$B.y′=3x2-$\frac{1}{x}$C.y′=3x2+$\frac{1}{{x}^{2}}$D.y′=3x2+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-5x-6≤0},B={x|x-3a<0},
(Ⅰ)当a=$\frac{1}{3}$时,求A∩B;
(Ⅱ)若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设lg2=a,lg3=b,则log125=(  )
A.$\frac{1-a}{2a+b}$B.$\frac{1-a}{a+2b}$C.$\frac{1+a}{a+2b}$D.$\frac{1+a}{2a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=|x2-4x+3|,x∈R.
(1)在区间[0,4]上画出函数f(x)的图象;
(2)写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等差数列{an}前9项的和为27,a10=8,则a100=98.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.学校对同时从高一,高二,高三三个不同年级的某些学生进行抽样调查,从各年级抽出人数如表所示.工作人员用分层抽样的方法从这些学生中共抽取6人进行调查
年级高一高二高三
数量50150100
(1)求这6位学生来自高一,高二,高三各年级的数量;
(2)若从这6位学生中随机抽取2人再做进一步的调查,求这2人来自同一年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(2b-c)cosA-acosC=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案