精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a、b、c分别为A、B、C所对的边,且2acosB+bcosA=2c,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形

分析 由正弦定理化简已知可得2sinAcosB+sinBcosA=2sinC,由三角形内角和定理,两角和的正弦函数公式可得
2sinC=2sinAcosB+2sinBcosA,解得sinBcosA=0,由sinB≠0,可求cosA=0,结合范围A∈(0,π),可得A的值.

解答 解:∵△ABC中,2acosB+bcosA=2c,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,得:2sinAcosB+sinBcosA=2sinC
又∵2sinC=2sin(A+B)=2sinAcosB+2sinBcosA,
∴sinBcosA=2sinBcosA,可得:sinBcosA=0,
∵sinB≠0,
∴可得:cosA=0,
∴由A∈(0,π),可得:A=$\frac{π}{2}$.
故选:C.

点评 本题考查三角形的形状判断,着重考查正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图所示,在正方体ABCD-A1B1C1D1中,O1、O为上、下底面的中心,在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有2条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx.
(1)当a=b=$\frac{1}{2}$时,求函数f(x)的单调区间;
(2)当a=0,b=-1时,方程f(x)=mx在区间[$\frac{1}{e}$,+∞)内有两个不同的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,且AC⊥FB.
(1)求证:平面EAC⊥平面FCB;
(2)若线段AC上存在点M,使AE∥平面FDM,求$\frac{AM}{MC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x∈R,x2-x+1≤0,则(  )
A.¬p:?x0∈R,x02-x0+1≤0B.¬p:?x∈R,x2-x+1≥0
C.¬p:?x∈R,x2-x+1>0D.¬p:?0x∈R,x02-x0+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.要做一个母线长为30cm的圆锥形的漏斗,要使其体积最大,则其底面半径为10$\sqrt{6}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为(  )
A.120B.160C.280D.400

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题:“若$\sqrt{x}$>1,则lnx>0”的否命题为(  )
A.若$\sqrt{x}$>1,则lnx≤0B.若$\sqrt{x}$≤1,则lnx>0C.若$\sqrt{x}$≤1,则lnx≤0D.若lnx>0,则$\sqrt{x}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y=9x2的焦点坐标为(  )
A.($\frac{1}{36}$,0)B.(0,$\frac{1}{36}$)C.($\frac{9}{4}$,0)D.(0,$\frac{9}{4}$)

查看答案和解析>>

同步练习册答案