分析 (1)求出函数的导数,从而得到函数的单调区间;
(2)问题转化为只需m=1+$\frac{lnx}{x}$有两个实数解,令g(x)=1+$\frac{lnx}{x}$,(x>0),求出g(x)的最值,从而求出m的范围即可.
解答 解:(1)当a=b=$\frac{1}{2}$时,f(x)=lnx-$\frac{1}{4}$x2-$\frac{1}{2}$x(x>0),
f′(x)=$\frac{1}{x}$-$\frac{1}{2}$x-$\frac{1}{2}$=$\frac{-(x+2)(x-1)}{2x}$,
易知f(x)在(0,1]上递增,在[1,+∞)上递减,
故f(x)的最大值为f(1)=-$\frac{3}{4}$.(6分)
(2)当a=0,b=-1时,f(x)=lnx+x,
由f(x)=mx,得lnx+x=mx,
又x>0,于是m=1+$\frac{lnx}{x}$,
要使方程f(x)=mx在区间[$\frac{1}{e}$,+∞)内有两个不同的实数解,
只需m=1+$\frac{lnx}{x}$区间[$\frac{1}{e}$,+∞)内有两个不同的实数解,
令g(x)=1+$\frac{lnx}{x}$,(x>0),于是g′(x)=$\frac{1-lnx}{{x}^{2}}$,
由g′(x)>0,得0<x<e,由g′(x)<0,得x>e,
于是g(x)在区间[$\frac{1}{e}$,e]上是增函数,在区间[e,+∞)上是减函数,
g($\frac{1}{e}$)=1-e,g(e)=1+$\frac{1}{e}$,
故1-e≤m<1+$\frac{1}{e}$.
点评 本题主要考查利用导数求函数在闭区间上的单调性、最值问题,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | BD⊥平面ACC1A1 | |
| B. | AC⊥BD | |
| C. | A1B∥平面CDD1C1 | |
| D. | 该正方体的外接球和内接球的半径之比为2:1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 斜三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (¬p)∧(¬q) | B. | p∨(¬q) | C. | p∧(¬q) | D. | (¬p)∧q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com