【题目】如图,已知椭圆的左顶点,且点在椭圆上, 分别是椭圆的左、右焦点。过点作斜率为的直线交椭圆于另一点,直线交椭圆于点.
(1)求椭圆的标准方程;
(2)若为等腰三角形,求点的坐标;
(3)若,求的值.
【答案】(1)(2)(3)
【解析】试题分析:
(1)由题意得到关于的方程组,求解方程组可得椭圆的标准方程: ;
(2)由题意可得点在轴下方据此分类讨论有: ,联立直线的方程与椭圆方程可得;
(3)设直线的方程,联立直线方程与椭圆方程,可得 利用几何关系计算可得 ,利用点在椭圆上得到关于实数k的方程,解方程有: .
试题解析:
(1)由题意得,解得
∴椭圆的标准方程:
(2)∵为等腰三角形,且∴点在轴下方
若,则;
若,则,∴;
若,则,∴;
∴
∴直线的方程,由得或
∴
(3)设直线的方程,
由得
∴ ∴
∴ ∴
若,则∴,∴,∵,∴,∴与不垂直;
∴,∵, ,
∴直线的方程,直线的方程:
由 解得 ∴
又点在椭圆上得,即,即
∵,∴
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一家商场销售一种商品,该商品一天的需求量在范围内等可能取值,该商品的进货量也在范围内取值(每天进货1次).这家商场每销售一件该商品可获利60元;若供不应求,可从其他商店调拨,销售一件该商品可获利40元;若供大于求,剩余的每处理一件该商品亏损20元.设该商品每天的需求量为,每天的进货量为件,该商场销售该商品的日利润为元.
(1)写出这家商场销售该商品的日利润为关于需求量的函数表达式;
(2)写出供大于求,销售件商品时,日利润的分布列;
(3)当进货量多大时,该商场销售该商品的日利润的期望值最大?并求出日利润的期望值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点、,当,且满足时,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形中,,为中点,沿直线将翻折成,使平面平面.点分别在线段上,若沿直线将四边形向上翻折,使与重合,则__________,四棱锥的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的极坐标方程,并求出曲线与公共弦所在直线的极坐标方程;
(2)若射线与曲线交于两点,与曲线交于点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com