精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.
(1)椭圆的标准方程为;(2)点不在以线段为直径的圆上.

试题分析:(1)求椭圆的标准方程,已知椭圆的离心率为,短轴端点分别为,可设椭圆方程为,由,可得,从而得椭圆的标准方程;(2)由于,是椭圆上关于轴对称的两个不同点,可设,若点在以线段为直径的圆上,则,即,即,因此可写出直线的方程为,令,得,写出向量的坐标,看是否等于0,即可判断出.
(1)由已知可设椭圆的方程为:             1分
,可得,                              3分
解得,                           4分
所以椭圆的标准方程为.                           5分
(2)法一:设                              6分
因为
所以直线的方程为,                   7分
,得,所以.                         8分
所以                          9分
所以,                     10分
又因为,代入得                11分
因为,所以.                12分
所以,                              13分
所以点不在以线段为直径的圆上.                    14分
法二:设直线的方程为,则.          6分
化简得到
所以,所以,                               8分
所以
所以,所以                               9分
所以                                     10分
所以,                                  12分
所以,                                                               13分
所以点不在以线段为直径的圆上.                                      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点).

(1)证明:动点在定直线上;
(2)作的任意一条切线(不含轴)与直线相交于点,与(1)中的定直线相交于点,证明:为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的方程为,过原点作斜率为的直线和曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,过作斜率为的直线与曲线相交,另一个交点记为,如此下去,一般地,过点作斜率为的直线与曲线相交,另一个交点记为,设点).
(1)指出,并求的关系式();
(2)求)的通项公式,并指出点列,向哪一点无限接近?说明理由;
(3)令,数列的前项和为,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,点,线段的中点在抛物线上. 设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆
(1)求的值;
(2)证明:圆轴必有公共点;
(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·黄冈模拟)如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是(  )
A.B.C.D.3

查看答案和解析>>

同步练习册答案