8£®É躯Êýy=x3+x2+x+1ÔÚµãM£¨1£¬4£©´¦µÄÇÐÏßΪl£¬Ë«ÇúÏß$\frac{x^2}{8}$-$\frac{y^2}{2}$=1µÄÁ½Ìõ½¥½üÏßÓëlΧ³ÉµÄ·â±ÕͼÐεÄÇøÓòΪP£¨°üÀ¨±ß½ç£©£¬µãAÎªÇøÓòPÄÚµÄÈÎÒ»µã£¬ÒÑÖªB£¨4£¬5£©£¬OÎª×ø±êÔ­µã£¬Ôò$\overrightarrow{OA}$•$\overrightarrow{OB}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{23}{12}$B£®3C£®2D£®$\frac{26}{11}$

·ÖÎö ÀûÓõ¼ÊýµÄ¼¸ºÎÒâÒåÇó³öÇÐÏß·½³ÌºÍË«ÇúÏߵĽ¥½üÏߣ¬×÷³ö¶ÔÓ¦µÄ·â±ÕÇøÓò£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýµÄ¶¨ÒåÇó³öÏòÁ¿ÊýÁ¿»ýµÄ±í´ïʽ£¬ÀûÓÃÏßÐԹ滮µÄ֪ʶ½øÐÐÇó½â¼´¿É£®

½â´ð ½â£ºº¯ÊýµÄµ¼Êýf¡ä£¨x£©=3x2+2x+1£¬
Ôòº¯ÊýÔÚµãM£¨1£¬4£©´¦µÄÇÐÏßÏòÁ¿Îªk=f¡ä£¨1£©=3+2+1=6£¬
Ôò¶ÔÓ¦µÄÇÐÏß·½³ÌΪy-4=6£¨x-1£©£¬¼´y=6x-2£¬
Ë«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À$\frac{1}{2}$x£¬
Ôò¶ÔÓ¦µÄ·â±ÕÇøÓòΪ£¬
ÉèA£¨x£¬y£©£¬Ôò$\overrightarrow{OA}$•$\overrightarrow{OB}$=4x+5y£¬
Éèz=4x+5y£¬µÃy=$-\frac{4}{5}x+\frac{z}{5}$£¬
Æ½ÒÆÖ±Ïßy=$-\frac{4}{5}x+\frac{z}{5}$£¬ÓÉͼÏó¿ÉÖªµ±Ö±Ïßy=$-\frac{4}{5}x+\frac{z}{5}$£¬
¾­¹ýµãAʱ£¬Ö±Ïßy=$-\frac{4}{5}x+\frac{z}{5}$½Ø¾à×î´ó£¬´Ëʱz×î´ó£®
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{y=6x-2}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{4}{11}}\\{y=\frac{2}{11}}\end{array}\right.$£¬¼´A£¨$\frac{4}{11}$£¬$\frac{2}{11}$£©£¬
´Ëʱz=4x+5y=4¡Á$\frac{4}{11}$+5¡Á$\frac{2}{11}$=$\frac{26}{11}$£¬
¹ÊÑ¡£ºD

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬Éæ¼°µ¼ÊýµÄ¼¸ºÎÒâÒ壬˫ÇúÏßµÄÐÔÖÊÒÔ¼°ÏòÁ¿ÊýÁ¿»ýµÄ¹«Ê½£¬×ÛºÏÐÔ½ÏÇ¿£¬ÔËËãÁ¿½Ï´ó£¬ÀûÓÃÊýÐνáºÏÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÕý·½ÐΣ¬PD¡ÍÆ½ÃæABCD£¬PD=AB=2£¬E¡¢F¡¢G·Ö±ðΪPD¡¢PC¡¢BCµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºPA¡ÎÆ½ÃæBDF£»
£¨¢ò£©ÇóÒìÃæÖ±ÏßPBÓëEGËù³É½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨an£¬1£©£¬$\overrightarrow{b}$=£¨an+1£¬2£©£¬ÇÒa1=1£®ÈôÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÔòSn=£¨¡¡¡¡£©
A£®2n-1B£®1-2nC£®2-£¨$\frac{1}{2}$£©n-1D£®£¨$\frac{1}{2}$£©n-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn-an=n2-n£¬n¡ÊN+£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}Âú×ãbn=$\left\{\begin{array}{l}{\frac{1}{\sqrt{n-1}+\sqrt{n+1}}£¨n=2k-1£©}\\{\frac{1}{{a}_{\frac{n}{2}}{a}_{\frac{n}{2}+1}}£¨n=2k£©}\end{array}\right.$£¨k¡ÊN+£©£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóT2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Éè¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CµÄ¶ÔÓ¦±ß·Ö±ðΪa¡¢b¡¢c£¬ÈôÏòÁ¿$\overrightarrow{m}$=£¨a-b£¬1£©ÓëÏòÁ¿$\overrightarrow{n}$=£¨a-c£¬2£©¹²Ïߣ¬ÇÒ¡ÏA=120¡ã£®
£¨1£©a£ºb£ºc£»
£¨2£©Èô¡÷ABCÍâ½ÓÔ²µÄ°ë¾¶Îª14£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¹«²î²»Îª0µÈ²îÊýÁÐ{an}Âú×㣺a1£¬a2£¬a7³ÉµÈ±ÈÊýÁУ¬a3=9£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍSn£¬ÇóÊýÁÐ{$\frac{{S}_{n}}{n}$}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÉèË«ÇúÏß$\frac{x^2}{m}+\frac{y^2}{n}$=1µÄÀëÐÄÂÊΪ2£¬ÇÒÒ»¸ö½¹µãF£¨2£¬0£©£¬Ôò´ËË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®${x^2}-\frac{y^2}{3}=1$B£®${y^2}-\frac{x^2}{3}=1$C£®$\frac{x^2}{12}-\frac{y^2}{4}=1$D£®$\frac{y^2}{12}-\frac{x^2}{4}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÉèA={x|$\frac{1}{1-x}$¡Ý1}£¬B={x|x2+2x-3£¾0}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®[0£¬1£©B£®£¨-¡Þ£¬-3£©C£®D£®£¨-¡Þ£¬-3£©¡È£¨1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªa£¾0£¬ÇÒ¶ÔÒ»ÇÐx¡Ý0£¬ÓÐeax-ax2¡Ý0£¬ÔòaµÄȡֵ·¶Î§ÊÇ[$\frac{4}{{e}^{2}}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸