【题目】在如图所示的圆柱
中,AB为圆
的直径,
是
的两个三等分点,EA,FC,GB都是圆柱
的母线.
![]()
(1)求证:
平面ADE;
(2)设BC=1,已知直线AF与平面ACB所成的角为30°,求二面角A—FB—C的余弦值.
【答案】(1)见解析(2)
.
【解析】
(1)由
,另易证得
,即可证得面
面
,由面面平行,从而证得线面平行,即
面
.
(2)连接
,易证
面
,可过
作
交
于
,连接
,则
即为二面角A—FB—C的平面角,求出其余弦值即得.
解:(1)连接
,因为C,D是半圆
的两个三等分点,
![]()
所以
,
又
,
所以
均为等边三角形.
所以
,
所以四边形
是平行四边形,所以
,
又因为
平面ADE,
平面ADE,所以
平面ADE.
因为EA,FC都是圆柱
的母线,所以EA//FC.
又因为
平面ADE,
平面ADE,
所以
平面ADE. 又
平面
,
所以平面
平面ADE,又
平面
,所以
平面ADE.
(2)连接AC,因为FC是圆柱
的母线,所以
圆柱
的底面,
所以
即为直线AF与平面ACB所成的角,即
因为AB为圆
的直径,所以
,
在
,
所以
,所以在![]()
因为
,又因为
,所以
平面FBC,
又
平面FBC,所以
.
在
内,作
于点H,连接AH.
![]()
因为
平面ACH,所以
平面ACH,
又
平面ACH,所以
,
所以
就是二面角
的平面角.
在
,在
,
所以
,所以
,
所以二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务.2019年11月27日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为
,服务水平的满意率为
,对业务水平和服务水平都满意的客户有180人.
(Ⅰ)完成下面
列联表,并分析是否有
的把握认为业务水平与服务水平有关;
对服务水平满意人数 | 对服务水平不满意人数 | 合计 | |
对业务水平满意人数 | |||
对业务水平不满意人数 | |||
合计 |
(Ⅱ)为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用
表示对业务水平不满意的人数,求
的分布列与期望;
(Ⅲ)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为
,只对其中一项不满意的客户流失率为
,对两项都不满意的客户流失率为
,从该运营系统中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?
附:
,
.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各
户贫困户,工作组对这
户村民的年收入、劳动能力、子女受教育等情况等进行调查,并把调查结果转换为贫困指标
,再将指标
分成
、
、
、
、
五组,得到如下图所示的频率分布直方图.若规定
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当
时,认定该户为“低收入户”,当
时,认定该户为“亟待帮助户”.已知此次调查中甲村的“绝对贫困户”占甲村贫困户的
.
![]()
(1)完成下列列联表,并判断是否有
的把握认为“绝对贫困户”数与村落有关;
(2)某干部决定在这两村贫困指标在
、
内的贫困户中,利用分层抽样抽取
户,现从这
户中再随机选取
户进行帮扶,求所选
户中至少有一户是“亟待帮助户”的概率.
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年3月12日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2019年年底的贫困人口和贫困发生率统计表.则下面结论正确的是( )
(年底贫困人口的线性回归方程为
(其中
年份-2019),贫困发生率的线性回归方程为
(其中
年份-2009))
![]()
A.2010年~2019年十年间脱贫人口逐年减少,贫困发生率逐年下降
B.2012年~2019年连续八年每年减贫超过1000万,且2019年贫困发生率最低
C.2010年~2019年十年间超过1.65亿人脱贫,其中2015年贫困发生率低于6%
D.根据图中趋势线可以预测,到2020年底我国将实现全面脱贫
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(1)若
,点
在椭圆
上,
、
分别为椭圆的两个焦点,求
的范围;
(2)若
过点
,射线
与椭圆
交于点
,四边形
能否为平行四边形?若能,求此时直线
斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有三个点在椭圆C上,左、右焦点分别为F1、F2.
(1)求椭圆C的方程;
(2)过左焦点F1且不平行坐标轴的直线l交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线x=﹣3于点M,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com