精英家教网 > 高中数学 > 题目详情

【题目】已知,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为

1)若,点在椭圆上,分别为椭圆的两个焦点,求的范围;

2)若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.

【答案】1;(2.

【解析】

1)求得焦点坐标,设,运用向量数量积的坐标表示,结合椭圆的范围,可得所求范围;

2)设的坐标分别为,运用中点坐标公式和点差法,直线的斜率公式,结合平行四边形的性质,即可得到所求斜率.

解:(1时,椭圆,两个焦点

,可得,即

因为

所以的范围是

2)设的坐标分别为,可得

,两式相减可得

,即

,又设,直线

即直线的方程为

从而,代入椭圆方程可得,

,联立得

若四边形为平行四边形,那么也是的中点,

所以,即,整理可得

解得,经检验满足题意,

所以当时,四边形为平行四边形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体中,点分别为线段上的动点,且,则以下结论错误的是(

A.平面

B.平面平面

C.,使得平面

D.,使得平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资人打算投资甲乙两个项目根据预测乙项目可能的最大盈利率分别为100%50%,可能的最大亏损率分别为30%10%,投资人计划投资金额不超过10万元要求确保可能的资金亏损不超过1.8万元问投资人对甲乙两个项目各投资多少万元才能使可能的盈利最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的圆柱中,AB为圆的直径,的两个三等分点,EAFCGB都是圆柱的母线.

1)求证:平面ADE

2)设BC=1,已知直线AF与平面ACB所成的角为30°,求二面角AFBC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台.已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计结果如表:

送餐距离(千米)

01]

12]

23]

34]

45]

频数

15

25

25

20

15

以这100名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.

1)若某送餐员一天送餐的总距离为100千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数,且同一组中的数据用该组区间的中点值为代表).

2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份7元,超过4千米为远距离,每份12元.记X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.

其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.

1:一级滤芯更换频数分布表

一级滤芯更换的个数

8

9

频数

60

40

2:二级滤芯更换频数条形图

100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;

2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;

3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形ABCD中,,将直角梯形ABCD(及其内部)以AB所在直线为轴顺时针旋转90°,形成如图所示的几何体,其中M的中点.

1)求证:

2)求异面直线BMEF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案